FINITE ELEMENT BASED THERMOMECHANICAL FATIGUE ANALYSIS OF SOLDER JOINTS IN ELECTRONIC PACKAGES

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

HASAN SAĞDIÇ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING

JUNE 2024

Approval of the thesis:

submitted by HASAN SAĞDIÇ in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering, Middle East Technical University by,

Prof. Dr. Naci Emre Altun Dean, Graduate School of Natural and Applied Sciences	
Prof. Dr. Mehmet Ali Sahir Arıkan Head of the Department, Mechanical Engineering	
Prof. Dr. Suat Kadıoğlu Supervisor, Mechanical Engineering, METU	
Examining Committee Members:	
Prof. Dr. Haluk Darendeliler Mechanical Engineering, METU	
Prof. Dr. Fevzi Suat Kadıoğlu Mechanical Engineering, METU	
Assist. Prof. Dr. Orkun Özşahin Mechanical Engineering, METU	
Assist. Prof. Dr. Gökhan Osman Özgen Mechanical Engineering, METU	
Assoc. Prof. Dr. Hamit Tekin Mechanical Engineering, UTAA	

Date: 07.06.2024

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name Last Name: Hasan Sağdıç

Signature:

ABSTRACT

FINITE ELEMENT BASED THERMOMECHANICAL FATIGUE ANALYSIS OF SOLDER JOINTS IN ELECTRONIC PACKAGES

Sağdıç, Hasan Master of Science, Mechanical Engineering Supervisor: Prof. Dr. Suat Kadıoğlu

June 2024, 109 pages

Due to the materials with different thermal expansion coefficients in electronic packages, failures occur with temperature changes. The location of the failure is observed in the solder balls used as joining materials for different components and failure type is crack formation. In this study, thermomechanical simulation and fatigue lifetime calculations of a 144-connection ball grid array (BGA) electronic package made of Sn3.0Ag0.5Cu (SAC305) were performed. For lifetime prediction model Engelmair modified Coffin-Manson method was used. In order to find the geometric configuration of the electronic package with the longest lifetime, a response surface optimization study was performed, including parameters such as under bump metallization (UBM) thicknesses, solder ball diameter and height. Two separate optimization studies were performed, one using the Anand viscoplastic (AV) material model for SAC305 and the other using the Elastoplastic (EP) material model. As a result of the optimization study with the AV material model, a geometric configuration with a 140% increase in lifetime value compared to the original geometry was found, and a configuration with a 163% increase was found with the EP material model. Finally, when the lifetime results of the best configurations from each material model are compared, it is found that the AV material model produces more conservative lifetime results than EP.

Keywords: TMF, Solder ball, RSO

ELEKTRONIK PAKETLERDE BULUNAN LEHİM TOPÇUKLARININ SONLU ELEMANLAR YÖNTEMİ İLE YORULMA ANALİZLERİ

ÖΖ

Sağdıç, Hasan Yüksek Lisans, Makina Mühendisliği Tez Yöneticisi: Prof. Dr. Suat Kadıoğlu

Haziran 2024, 109 sayfa

Farklı termal genleşme katsayılarına sahip olan malzemelerden oluşan elektronik paketlerde sıcaklık değişikliklerine bağlı olarak hasar durumları gözükmektedir. Hasar, birleştirici malzeme olarak kullanılan lehim topçuklarında sıcaklık çevrimlerine bağlı olarak çatlak oluşumu olarak görülmektedir. Bu çalışmada Sn3.0Ag0.5Cu (SAC305) malzemeden oluşan 144 bağlantılı BGA ye sahip elektronik paketin termomekanik yorulma simulasyonları yapılmış ve ömür hesapları gerçekleştirilmiştir. Ömür hesaplarında Engelmair Coffin-Manson metodu kullanılmıştır. Elektronik paketin en uzun ömre sahip geometrik konfigürasyonunu bulmak için içerisinde lehim topçuk altı kalınlıklarının, lehim topçuk çap ve yükselik gibi parametrelerinin de olduğu yanıt yüzey optimizasyon çalışması gerçekleştirilmiştir. İki ayrı optimizasyon çalışması gerçekleştirilmiş, birinde SAC305 için Anand viscoplastic (AV) malzeme modeli diğerinde ise Elastoplastik (EP) malzeme modeli kullanılmıştır. AV malzeme modeli ile yapılan optimizasyon çalışması sonucu orijinal geometriye göre ömür değeri %140 artan bir geometrik konfigürasyon, EP malzeme modeli yapılan da ise ömür değeri %163 artan bir konfigürasyon bulunmuştur. Son olarak, en iyi konfigürasyonların ömür sonuçları karşılaştırıldığında AV malzeme modelinin EP ye göre daha düşük ömür sonuçları ürettiği görülmüştür.

Anahtar Kelimeler: TMF, Solder Ball, RSO

To my dear mom and brother

ACKNOWLEDGMENTS

The author wishes to express his deepest gratitude to his supervisor Prof. Dr. Suat Kadıoğlu for his guidance, advice, criticism, encouragements and insight throughout the research.

.

TABLE OF CONTENTS

ABSTRACTv
ÖZ vi
ACKNOWLEDGMENTS viii
TABLE OF CONTENTS ix
LIST OF TABLES xii
LIST OF FIGURES xiii
LIST OF ABBREVIATIONS xvii
LIST OF SYMBOLS xix
CHAPTERS
1 INTRODUCTION1
1.1 Electronic Packages
1.2 Thermal Problem with Operation of Electronic Packages
1.3 Scope of This Thesis
1.4 Structure of This Thesis
2 LITERATURE REVIEW7
2.1 Observed Problems in Solder Balls due to Temperature Effect7
2.2 Finite Element Analysis as a Proposed Improvement Tool
2.3 Material Models in Thermomechanical Analysis of Solder Balls
2.3.1 Anand Viscoplastic Material Model
2.3.2 Elasto-Plastic Material Model14
2.4 Life Prediction Models
2.4.1 Engelmaier Modified Coffin-Manson Life Prediction Model

2.5	Global-Local Modelling Approach for Finite Element Analysis	18
3 FI	NITE ELEMENT MODEL VALIDATION	21
3.1	Benchmark Study	22
4 FI	NITE ELEMENT SIMULATION AND OPTIMIZATION WITH	AV
MATE	RIAL MODEL	41
4.1	Global Model Simulation	46
4.2	Local Model Preparation	49
4.2	2.1 Mesh Dependency	52
4.3	Design of Experiment	54
4.4	Response Surface	56
4.5	Optimization	59
4.6	LifeTime Result of Solder Ball in the best Geometric Configuration	63
5 FI	NITE ELEMENT SIMULATION AND OPTIMIZATION WITH	EP
5 FI MATE	NITE ELEMENT SIMULATION AND OPTIMIZATION WITH	EP 67
5 FI MATE 5.1	NITE ELEMENT SIMULATION AND OPTIMIZATION WITH RIAL MODEL Design of Experiment	EP 67 69
5 FI MATEI 5.1 5.2	NITE ELEMENT SIMULATION AND OPTIMIZATION WITH RIAL MODEL Design of Experiment Response Surface	EP 67 69 69
5 FI MATEI 5.1 5.2 5.3	NITE ELEMENT SIMULATION AND OPTIMIZATION WITH RIAL MODEL Design of Experiment Response Surface Optimization	EP 67 69 69 71
5 FI MATE 5.1 5.2 5.3 5.4	NITE ELEMENT SIMULATION AND OPTIMIZATION WITH RIAL MODEL Design of Experiment Response Surface Optimization Lifetime Result of Solder Ball the best Geometric Configuration	EP 67 69 69 71 75
5 FI MATEI 5.1 5.2 5.3 5.4 6 CC	NITE ELEMENT SIMULATION AND OPTIMIZATION WITH RIAL MODEL Design of Experiment Response Surface Optimization Lifetime Result of Solder Ball the best Geometric Configuration	EP 67 69 69 71 75 79
5 FI MATE 5.1 5.2 5.3 5.4 6 CC 6.1	NITE ELEMENT SIMULATION AND OPTIMIZATION WITH RIAL MODEL Design of Experiment Response Surface Optimization Lifetime Result of Solder Ball the best Geometric Configuration ONCLUSION Lifetime Improvements of the Optimized Configurations	EP 67 69 71 75 79 80
5 FI MATEI 5.1 5.2 5.3 5.4 6 CC 6.1 6.1	NITE ELEMENT SIMULATION AND OPTIMIZATION WITH RIAL MODEL Design of Experiment Response Surface Optimization Lifetime Result of Solder Ball the best Geometric Configuration ONCLUSION Lifetime Improvements of the Optimized Configurations 1.1 AV Material Model	EP 67 69 71 75 79 80
5 FI MATE 5.1 5.2 5.3 5.4 6 CC 6.1 6.1 6.1	NITE ELEMENT SIMULATION AND OPTIMIZATION WITH RIAL MODEL Design of Experiment Response Surface Optimization Lifetime Result of Solder Ball the best Geometric Configuration ONCLUSION Lifetime Improvements of the Optimized Configurations 1.1 AV Material Model 1.2 EP Material Model	EP 67 69 71 75 79 80 80 83
5 FI MATEI 5.1 5.2 5.3 5.4 6 CC 6.1 6.1 6.1 6.1	NITE ELEMENT SIMULATION AND OPTIMIZATION WITH RIAL MODEL Design of Experiment Response Surface Optimization Lifetime Result of Solder Ball the best Geometric Configuration DNCLUSION Lifetime Improvements of the Optimized Configurations 1.1 AV Material Model 1.2 EP Material Model 1.3 Discussion	EP 67 69 71 75 79 80 83 85

6.3	Future Work	86
REFER	ENCES	87
APPEN	IDICES	95
A.	ANSYS Workbench Project Schematic	95
B.	DOE Design Points with AV Material Model	96
C.	DOE Design Points with EP Material Model	. 103

LIST OF TABLES

TABLES
Table 1 Functions of UBM and associated used metal types
Table 2 Thermomechanical fatigue life of the test specimens in cycles [10]9
Table 3 Original dimensions of the Model A and Model B24
Table 4 FE properties of the Model A and Model B24
Table 5 Elastic and thermophysical material properties of Model A components27
Table 6 Anand viscoplasticity material properties for two different solder materials
Table 7 Solder material type and associated fatigue ductility coefficient38
Table 8 Comparison of values between Model A and Model B
Table 9 Names of the components in the interested structure and their associated
materials
Table 10 Elastic and thermophysical properties of used materials43
Table 11 AV material model properties of SAC305 material44
Table 12 Dimensions of the components whose values will remain constant during
optimizations45
Table 13 Original dimensions of the components whose values will be optimized 45
Table 14 Element types used in the global model47
Table 15 Dimension ranges of parameters used in DOE/optimization study55
Table 16 Specified interval sizes for parameter values changes accordingly between
optimization calculations60
Table 17 Parameter values of the best configuration 61
Table 18 Multilinear kinematic hardening material model properties of SAC305.68
Table 19 Parameter values of the best configuration 72
Table 20 Comparison of optimized parameter values and life cycle obtained using
two different material models

LIST OF FIGURES

FIGURES
Figure 1. Generic image of electronic package with BGA connection [1]2
Figure 2. Representative drawing of one solder ball BGA electronic package 3
Figure 3. Result of thermal cycles (a) Formation of crack and (b) propagation of
crack causing failure in the solder ball [4]
Figure 4. Main cause for failure of electronic packages [6]
Figure 5. A failure site in a Pb-free solder bump joint after the thermal test [10]9
Figure 6. Typical stress strain curve for materials which shows Elasto-Plastic
material behavior [33] 15
Figure 7. Typical stress-strain hysteresis loop of viscoplastic materials and total and
plastic strain ranges [35]
Figure 8. Quarter model CAD images of Model A [21] (a) and Model B (current
study) (b)
Figure 9. Quarter finite element model of Model A (a) and Model B (b) 25
Figure 10. Side view of Model B's mesh model, the transition of mesh
Figure 11. Applied temperature cycle profiles of (a) Model A and (b) Model B \dots 27
Figure 12. Critical solder ball location of Model B throughout the analysis
Figure 13. Equivalent stress at the critical point throughout the temperature cycles
(63Sn37Pb); (a) Model A [21], (b) Model B
Figure 14. Equivalent strain at the critical point throughout the temperature cycles
(63Sn37Pb); (a) Model A, (b) Model B
Figure 15. Equivalent stress vs equivalent strain hysteresis loop (63Sn37Pb); (a)
Model A, (b) Model B
Figure 16. Equivalent stress at the critical point throughout the temperature cycles
(96.5Sn3.5Ag); (a) Model A, (b) Model B
Figure 17. Equivalent strain at the critical point throughout the temperature cycles
(96.5Sn3.5Ag); (a) Model A, (b) Model B

Figure 18. Equivalent stress vs equivalent strain hysteresis loop (96.5Sn3.5Ag); (a)
Model A, (b) Model B
Figure 19. Stress vs strain hysteresis loop result using Anand viscoplastic model in
[18]40
Figure 20. CAD image of electronic package with 144 connection BGA with names
of components indicated41
Figure 21. (a) Cross-sectional view of structure under consideration, (b) close-up
cross-sectional view of solder ball and UBM with names of components indicated
Figure 22. Converting original structure to quarter model to form global model (Die
is transparent to show to solder balls), (a) original model (b) quarter model46
Figure 23. Mesh structure of the global model
Figure 24. Boundary conditions of the global model
Figure 25. Critical solder ball in the global model during the temperature cycles49
Figure 26. (a) Locations of cutting surfaces in the top view of global model (Die is
transparent to show solder balls), (b) local model in isometric view
Figure 27. At 5400 seconds of the simulation, defined (a) displacement boundary
condition and (b) temperature load condition51
Figure 28. Variation of strain range and computation time values with respect to total
number of elements of the local model mesh
Figure 29. Mesh structure of the local model, (a) in isometric view, (b) in close-up
view
Figure 30. Workflow of response surface optimization study in ANSYS54
Figure 31. Two parameter design point distribution in design space with OSF
method. Points are placed equally distant from each other [42]56
Figure 32. Generic figure to show how RS is generated with using NPR method [43]
Figure 33. Goodness of fit values of generated RS
Figure 34. Distribution of the design points in the graph whose x axis shows the real
solution values and y axis shows the values found from RS

Figure 35. Pie chart that shows the sensitivity of the input parameters to strain range Figure 36. ANSYS optimization result showing the best geometric configuration Figure 38. Change of each parameter value over the optimization iterations; (a) P1, Figure 40. Most critical point appears in the upper contact surface and at the Figure 41. Equivalent stress vs equivalent strain curves; (a) generated in ANSYS WB to show behavior of the 3 cycles, (b) third cycle isolated to show equivalent Figure 42. Curves of SAC305 and other solder material types in uniaxial tensile test Figure 44. Goodness of fit values of generated RS......70 Figure 45. Distribution of the design points in the graph whose x axis shows the real Figure 46. Pie chart that shows the sensitivity of the input parameters to strain range Figure 47 ANSYS optimization result showing the best geometric configuration with Figure 49. Change of each parameter value over the optimization iterations; (a) P1, Figure 50 (continued). Change of each parameter value over the optimization iterations; (a) P1, (b) P2, (c) P3, (d) P4, (e) P5, (f) P6, (g) P7, (h) P8, (i) P9........75 Figure 51. Most critical point appears in the upper contact surface and at the

Figure 52. Equivalent stress vs equivalent strain curves; (a) generated in ANSYS
WB to show behavior of the 3 cycles, (b) third cycle isolated to show equivalent
strain range77
Figure 53. Most critical point appears in the upper contact surface and at the
outermost diameter
Figure 54. Equivalent stress vs equivalent strain curves of original structure with AV
model; (a) generated in ANSYS WB to show behavior of the 3 cycles, (b) third cycle
isolated to show equivalent strain range
Figure 55. Most critical point appears in the upper contact surface and at the
outermost diameter
Figure 56. Equivalent stress vs equivalent strain curves of original structure with EP
model; (a) generated in ANSYS WB to show behavior of the 3 cycles, (b) third cycle
isolated to show equivalent strain range

LIST OF ABBREVIATIONS

ABBREVIATIONS

Abbreviation	Definition
BGA	Ball Grid Array
PBGA	Plastic Ball Grid Array
SAC	Sn-Ag-Cu
SAC305	Sn3.0Ag0.5Cu
UBM	Under Bump Metallization
IC	Integrated Circuit
SMT	Surface Mount Technology
PWB	Printed Wiring Board
CTE	Coefficient of Thermal Expansion
TMF	Thermomechanical Fatigue
PCB	Printed Circuit Board
FPC	Flexible Printed Circuit Board
FE	Finite Element
FEA	Finite Element Analysis
AV	Anand Viscoplastic
EP	Elasto-Plastic
EPC	Elasto-Plastic Creep
СМ	Coffin-Manson
ECM	Engelmair modified Coffin-Manson
EPS	Equivalent Plastic Strain
LCF	Low Cycle Fatigue
LPM	Life Prediction Models
CAD	Computer Aided Design
VM	Von-Misses

DOE	Design of Experiment
RS	Response Surface
RSO	Response Surface Optimization
OSF	Optimal Space Filling
NPR	Non-parametric Regression
MOGA	Multi-Objective Genetic Algorithm
WB	Workbench

LIST OF SYMBOLS

SYMBOLS

Symbol	Definition
MPa	Mega Pascal
GPa	Giga Pascal
К	Kelvin
S	Second
ppm	Particle per Million
°C	Degree Celsius
J	Joule
Si	Silicon
Мо	Molybdenum
Cu	Copper
Ti	Titanium
Ni	Nickel
Pd	Palladium
Cr	Chromium
W	Tungsten
Au	Gold
μm	Micrometer
mm	Millimeter

CHAPTER 1

INTRODUCTION

1.1 Electronic Packages

Electronic devices are used in defense, aerospace and everyday commercial products. In order for these devices to fulfill their tasks, they contain electronic packages to perform logical operations. Fig. 1 shows an example of a cross-sectional drawing of an electronic package. Electronic packages generally consist of the following components

- Integrated circuit chip to perform logical calculations
- The substrate that carries the chip and other components and is used to integrate them into an upper system
- Element to provide electronic and mechanical connection between chip and substrate
- And components that thermally, mechanically, electronically and chemically improve the efficiency of the package (underfill, under bump metallization, solder mask etc.)

Over the years, there has been a need for electronic packages to be smaller, lighter and denser systems. For this reason, surface mount technology has been adopted and widely used in the construction of electronic packages. In SMT structure, the chip is joined to the substrate component in the electronic package using one of its surfaces entirely. This ensures a uniform contact area on the entire surface and reduces the planar dimensions of the electronic package since no external lead is needed.

Figure 1. Generic image of electronic package with BGA connection [1]

One type of junction used in SMT is the ball grid array. In this type, solder balls are used as an array between the IC chip and the substrate material (Fig. 1). This type of junction is widely used and as a result of developments, it appears to be advantageous to use. Advantages include the following [1]

- Efficient use of the surface of the substrate
- Improvement in electronic and thermal performance. Solder balls have low electronic resistance and high thermal conductivity and good heat dissipation due to the large number of connection paths
- Manufacturing yield increases as a result of improved solderability. BGAs provide a better level of solderability as well as wide spacing between joints
- Low total package thickness
- Excellent reworkability with larger pad sizes

In July 2006, the Restriction of Hazardous Substances directive restricted the use of lead-containing soldering materials. This has opened research and application areas for lead-free solder materials. When lead-free solder materials are examined, it is seen that Sn-Ag-Cu based materials have promising characteristics to replace lead-based materials [2].

In its simplest form, the solder bump interconnection in electronic packages consists of a multi-layer UBM, solder bump and metallic bond pads [3]. Fig. 2 shows a representative drawing of this form. It shows where the UBM layers, bond pads and solder ball are located in relation to each other.

Figure 2. Representative drawing of one solder ball BGA electronic package

The main purpose of the UBM layer is to join metal bond pads, solder bumps and metallic materials. In addition to electrical and mechanical connection, UBM solder provides wettable characteristics, diffusion resistance and the ability to join different metallic materials. Table 1 shows briefly the materials used in UBM and their functions.

Table 1. Functions of UBM and	associated use	ed metal types
-------------------------------	----------------	----------------

UBM Layer	Function	Metals Used	
	Joining of bond pad metal with		
Adhesion & diffusion passivation layer		Cr, Ti, TiW,	
barrier	Prevent diffusion interactions of bond	Ni, Pd, Mo	
	pad and solder materials		
Solder wettable laver	Improves ability of melted solder to	Cu Ni Pd	
Solder wettable layer	create a reliable joint		
Oxidation barrier layer	Prevents UBM structure from	Δu	
Oxidation barrier layer	oxidation	110	

1.2 Thermal Problem with Operation of Electronic Packages

Electronic packages are exposed to temperature changes due to their usage environment and this creates problems in the reliability of the packages. Each component of the electronic package has a different coefficient of thermal expansion value. With temperature changes, each component expands at different levels and this creates stresses in each component.

Solder balls are subjected to stress as they are the layer that connects components with these different expansion coefficients (Fig. 1,2). When the temperature change is cyclic, crack formation and propagation in solder balls is observed. Fig. 3 shows the formation and propagation of cracks in the solder ball due to temperature cycles as shown in scanning electron microscopy images [4]. These results show that thermomechanical fatigue studies are important in improving the reliability of solder balls.

(a) Partial fracture

(b) Complete fracture

Figure 3. Result of thermal cycles (a) Formation of crack and (b) propagation of crack causing failure in the solder ball [4]

1.3 Scope of This Thesis

It is known that temperature is the effect that most shortens the life of solder balls in electronic packages. However, it is often not possible to change the operating temperature of electronic packages to eliminate this effect. Therefore, if it is desired to increase the lifetime of the solder balls, one of the solutions is to adjust the dimensions of the components in the electronic package to reduce the stress/strain accumulation on it.

In this thesis, a life prediction and life improvement study of an electronic package with 144 connection 12x12 BGA (Fig. 15,16) was performed. The optimization study was performed using 9 different parameters including values of UBM thicknesses and solder ball diameter and height. It was aimed to find a geometric configuration that improves the lifetime compared to the original size structure. The response surface optimization module in ANSYS was used as the optimization tool.

In the thesis, the finite element method was used as the basic progress tool and TMF analysis of the structure of interest was performed in ANSYS 2023R2 program. SAC305 is used as the solder material. Preliminary analysis showed that the components with the lowest lifetime appeared to be the solder balls. Therefore, the main objective of the optimization was to extend the life of the most critical solder ball.

Within the scope of the thesis study, two different optimization studies were carried out. For SAC305 material, AV material model was used in the first one and EP material model was used in the second one.

Finally, it was observed that there is no such optimization study in the literature for the dimensions and material combination of the electronic package of interest. Therefore, this study is considered to be original and contributes to the literature.

1.4 Structure of This Thesis

This thesis contains 6 chapters. Chapter 1 presents the purpose and general scope of the study.

Chapter 2 presents the results of the literature survey related to the thesis topic. The historical development of the tools and models used in the thesis is presented and the reasons why they are used are explained.

In Chapter 3, in order to verify the capabilities of finite element simulation, a similar study in the literature was repeated and a benchmark study was performed.

In Chapter 4, the finite element model studies using the AV material model for SAC305 are presented. As a result of the response surface optimization, the geometric configuration with the highest solder ball lifetime was found.

Chapter 5 contains the repetition of the work done in Chapter 4. Here the EP material model was used for SAC305.

In Chapter 6, the results of the studies and the level of success achieved are presented. A dimensional comparison of the best geometric configurations obtained in Chapter 4 and Chapter 5 is presented and it is seen how much life improvement is achieved by optimization with each material model.

CHAPTER 2

LITERATURE REVIEW

With the developments in microelectronics, solder balls started to take place in electronic packages. After practical applications and observations, it was realized that the temperature excursions create problems on solder balls. Within the scope of this thesis, a literature survey on the problems caused by temperature excursions and proposed solutions has been conducted and presented.

2.1 Observed Problems in Solder Balls due to Temperature Effect

Electronic packages are structures that experience temperature changes in the components inside them due to their nature of generating heat while operating and the ambient temperatures at which they must operate.

Since the components that make up the electronic package have different CTEs, the components tend to experience different amounts of elongation with temperature changes. Due to the non-uniformity of these elongations, significant stresses arise at the interfaces between the components. In [5], stress generation on solder layers with temperature variations in multi-layer electronic packages consisting of different components was demonstrated. FE simulations were used to find the stress values. The related study is useful in terms of showing that the stresses which occur due to temperature changes are not specific to solder ball type connections, it affects all type of connections.

Repeated cycles of the stress generated due to temperature changes are the most damaging conditions for the reliability of the packages. Qiang Guo et. al. [6] showed that the main cause of failure among different types of loading in electronic packages is the temperature effect with 55%.

Figure 4. Main cause for failure of electronic packages [6]

Temperature cycles cause crack formation and propagation due to thermomechanical stress at solder interfaces. H. Xiao et al. [7] conducted a test study with different materials and SAC interface solders and demonstrated the crack formation and propagation in the solder material with the application of temperature cycles to the structure.

Similarly, in electronic packages with the type of joints using solder balls, it is seen that the solder interface is the component that receives the most critical damage and fails in the earliest with temperature cycles. C. Huang [8] performed thermal cycling tests on an electronic package using Sn3.0Ag0.5Cu solder balls. Thermal cycles were applied to electronic packages which were pre-applied different aging processes. Experimentally, a study was carried out to show if and where cracks would occur for different aging and temperature cycle times. In addition, F.X. Che and John H.L. [9] showed in an experimental study that the first failure occurs in the solder balls due to temperature cycles. In the study supported by experimental findings and FE simulation, no major problems were observed in the other components of the structure, while cracks formed in the solder balls. They propagated and caused the structure to fail. Similarly, H. Tohmyoh et. Al [10] performed thermal cycling tests of electronic packages consisting of Si chip, printed circuit board and solder balls with SAC305 material in between. In his tests, he used different Si chip thicknesses and temperature ranges and showed that the solder balls failed in each test. Table 2 summarizes the fatigue life of the solder ball test specimens. Cracks formed in the solder balls with temperature cycles, propagated and caused the structure to become inoperable (Fig. 5).

Chip Thickness	Applied Temperature Range (°C)		
(mm)	140	165	190
4	1920 ± 225	890 ± 98	420 ± 24
6	-	565 ± 75	-
7	787 ± 99	375 ± 45	229 ± 32

Table 2. Thermomechanical fatigue life of the test specimens in cycles [10]

Figure 5. A failure site in a Pb-free solder bump joint after the thermal test [10]

2.2 Finite Element Analysis as a Proposed Improvement Tool

Engineers and researchers have studied the problems of solder balls in electronic packages caused by temperature cycling. The center and goal of those investigations have been to predict the lifetime of solder balls in each configuration. FE analysis and experimental methods have been used to estimate the lifetime information of solder balls.

Simple or complex structures can be modeled using the FE method and results can be obtained on the components with appropriate adjustments. In the literature, many studies have used FE analysis simulations to find the damage parameter values on solder balls. The relevant damage parameter values are then used in the life prediction models and the thermal cycle life information of the solder balls can be extracted.

Studies have shown that SAC and soft metal (In, Pb, etc.) solder materials in electronic packages undergo plastic deformation with temperature cycles. These cycles generally have approximately 120-180°C temperature ranges and under these conditions solder balls have low lives ($<10^5$ cycles). It is therefore understood that solder balls exhibit low cycle fatigue behavior [11-14]. Therefore, the material models used for solder balls in FEA simulations are important.

2.3 Material Models in Thermomechanical Analysis of Solder Balls

Different material models have been used in different studies to find the lifetime of solder balls exposed to thermal cycling. It is seen that the damage parameter values on solder balls are extracted with FE simulations according to these material models.

When the literature is reviewed, it is seen that the Elasto-Plastic material model is used in some FE simulations. S.C. Yang et. al. [15] conducted an optimization study to find a different type of geometry for the joint as an alternative to the traditional solder ball geometry in order to increase the number of thermal cycle life. The author used the EP material model in his model. He validated the FE model with reference experiments and then performed the optimization study. In the optimization, the equivalent plastic strain value accumulated on the solder balls was used as the performance output parameter. After the optimization study, the solder geometry with the lowest EPS value in thermal cycles was determined. This study [15] is valuable in showing that experimental results can be captured, and optimization work can be done using the EP model.

In the literature, Elasto-Plastic Creep and AV material models are also used. F.X. Che and John H.L. [9] compared the life outputs of FE simulations using EP, EPC and AV material models with experimental data. The characteristic lifetime of the

electronic package was deduced from the experiments. It is shown that the FE simulation using the AV material model gives the closest lifetime result to the characteristic lifetime.

T. Hayashi et. al. [16] compared EPC and AV material models in his study. Tensile and stress relaxation tests were performed on a test clipping made of solder material. Then, both tests were modeled and simulated using FE method. The results of the FE simulations using both material models were compared with the test results. The results of the FE simulation using the AV material model were found to be consistent with the results of the tensile and stress relaxation tests in both transition and stationary regions. The EPC material model agreed with the stress relaxation test results in both transition and stationary regions in the FE simulation, but agreed with the tensile test results only in the transition region in the FE simulation. The author stated that the AV material model is a successful model in capturing the experimental results.

J-B. Libot et. al. [17] conducted an experimental and FE simulation study of an electronic package consisting of PCB and electronic components assembled with SAC305 solder balls. In the study, the solder balls in the electronic package were first tested with 4 different temperature profiles and the maximum shear stress-strain hysteresis loops were extracted. Then, FE simulations of the tests with AV material model were performed and 4 different shear stress-strain hysteresis loops were extracted. When the results are compared, it is observed that the simulation and test results were close for all 4 applications.

G.Z. Wang et. al. [18] compared the steady state creep test results of different solder materials found in the literature with the FE simulation results of the same test using the AV material model. After the comparison, the author stated that the results were close, and the AV material model can be used to find the stress and strain results of solder materials accurately.

In addition, different material models than those used above (Creep, Chaboche, Wiesse, etc.) are available in the literature [11,12,19]. However, these material

models are seen in a limited number of studies and there is not enough data for their verification with experimental studies.

As a result of the literature survey, it is concluded that the AV and EP material models can successfully extract the results of TMF analysis studies of solder components in electronic packages. In addition, it is noteworthy that the number of studies in the literature with AV [4,9,12,14,16,17,18,20-27] and EP material models [9,10,28-31] are much more than the other material models. In the next topics, AV and EP material models are explained physically and mathematically.

2.3.1 Anand Viscoplastic Material Model

AV material model is firstly proposed by Anand and Brown [32] to describe the deformation behaviors of conventional metals which are formed under elevated temperatures. Researches have shown that AV model can be used for materials whose deformation characteristics are sensitive and susceptible to strain rate, temperature and strain hardening and softening.

AV model contains set of constitutive equations that includes flow and evolution equations to fully describe the plastic flow of the material. The plastic flow includes both rate-dependent creep and rate-independent plastic deformations. Additionally, the model uses an internal state variable which is named deformation resistance to represent material's isotropic resistance to large plastic flows. This internal variable is denoted by *s*, and has the same dimension with stress. There is also one basic feature for this model; it needs no explicit yielding condition so that loading and unloading criterion is not needed. The plastic flow is assumed to take place at any non-zero stress values, although the inelastic strain values are very small at low stress values.

As stated earlier, the internal state variable *s* represents averaged isotropic deformation resistance to macroscopic plastic flow of materials. This variable characterizes the isotropic strengthening mechanisms such as dislocation density,

solid solution strengthening, sub grain and grain size effects, etc. In AV model, variable *s* is proportional to the equivalent stress σ_e . That is [18].

$$\sigma_e = c \cdot s; \ c < 1 \tag{2.3.1}$$

Equivalent stress σ_e is defined as

$$\sigma_e = \sqrt{\frac{1}{2} [(\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 + 6(\sigma_{23}^2 + \sigma_{31}^2 + \sigma_{12}^2)]}$$
(2.3.2)

where σ_{ij} (i, j = 1, 2, 3), are the stress components of Cauchy stress tensor σ .

And, c is material parameter and function of strain rate and temperature, which is defined as

$$c = \frac{1}{\xi} \sin h^{-1} \left[\left(\frac{\dot{\epsilon_p}}{A} e^{Q/RT} \right)^m \right]$$
(2.3.3)

where $\dot{\epsilon_p}$ is the inelastic strain rate in 1/s, Q is the activation energy in kJ/mol, T is absolute temperature in K, R is the universal gas constant in J/(K·mol), A is the preexponential factor in 1/s, m is the strain rate sensitivity and ξ is the stress multiplier.

The Anand model employs following functional form of flow equation to accommodate the strain rate dependence on the stress. Combining the Eq. (2.3.1) and (2.3.2), flow equation can be found as

$$\dot{\varepsilon}_p = Aexp\left(-\frac{Q}{RT}\right) \left[\sinh\left(\xi\frac{\sigma_e}{s}\right)\right]^{1/m}$$
(2.3.4)

Observe that deformation resistance variable enters the flow equation only as a ratio with equivalent stress. Also, temperature effect on the inelastic strain rate is incorporated via Arrhenius term. To fully use the flow equation to capture the inelastic strain rate under constant stress, internal variable *s* needs to be determined.

The evolution equation for the internal variable s is assumed to be of the form as

$$\dot{s} = h(\sigma, s, T)\dot{\varepsilon}_p \tag{2.3.5}$$

where function $h(\sigma, s, T)$ is associated with and incorporate the effects of dynamic recovery and strain hardening. Anand has given a simple form of evolution equation of Eq. (2.3.5) as follows:

$$\dot{s} = \left\{ h_0 \left| 1 - \frac{s}{s^*} \right|^a \cdot sign\left(1 - \frac{s}{s^*} \right) \right\} \cdot \dot{\varepsilon}_p; \ a > 1$$
(2.3.6)

where

$$s^* = \hat{s} \left[\frac{\dot{\varepsilon}_p}{A} exp\left(\frac{Q}{RT}\right) \right]^n \tag{2.3.7}$$

In Eq. (2.3.7), the value of s^* represents a saturation value of s associated with a set of applied temperature and strain rate. \hat{s} is a coefficient in MPa, h_0 is the hardening/softening coefficient in MPa, n is the strain rate sensitivity for the saturation value of deformation resistance, a is the strain rate sensitivity of hardening/softening, respectively.

2.3.2 Elasto-Plastic Material Model

In the Elasto-Plastic material model, the loaded material is modeled not only where it shows elastic deformation but also where it shows plastic deformation. In this model, the amount of deformation does not depend on the rate of loading but only on the amount of loading.

As an example, Fig. 6 shows the stress-strain graph of a material with elastoplastic behavior under loading. Here, the material shows plastic behavior after the stress on the material exceeds the elastic limit (yield point). At the point where it shows plastic behavior, the material has both elastic and plastic strain. In the plastic region, the elastic strain is recovered when the load on the material is released, but the plastic strain is permanent. Total strain can be defined as follows

$$\varepsilon = \varepsilon_e + \varepsilon_p \tag{2.3.8}$$

$$\varepsilon_e = \frac{\sigma}{E} \tag{2.3.9}$$

$$\varepsilon_p = \varepsilon - \varepsilon_e \tag{2.3.10}$$

where ε_e is elastic strain, ε_p is plastic strain and *E* is the elastic modulus.

Figure 6. Typical stress strain curve for materials which shows Elasto-Plastic material behavior [33]

In this model, it is also necessary to define a criterion that shows how much the materials will yield under how much loading amount. Two different criteria can be used here. The first one is Von-Misses yield criterion and the second one is Tresca yield criterion.

According to Von-Misses yield criterion; yield occurs when the equivalent stress value (σ_e) specified in Eq. 2.3.2 is greater than or equal to the yield stress of the material in uniaxial tension (*Y*).

Tresca yield criterion is also called maximum shear stress theory. According to this criterion Eq. 2.3.11 condition is met, the material yields.

$$\max(|\sigma_1 - \sigma_2|, |\sigma_2 - \sigma_3|, |\sigma_3 - \sigma_1|) = Y$$
(2.3.11)

where σ_i (*i* = 1,2,3) principal stress components of Cauchy stress tensor σ .

In the Elasto-Plastic material model, it is also necessary to define the evolution of the yield surface due to deformation in the plastic region, these are called strain hardening laws. There are three different strain hardening laws. These are listed below.

- Isotropic Hardening
- Kinematic Hardening
- Mixed Hardening

In this thesis Von Mises Yield criterion and kinematic hardening is used.

2.4 Life Prediction Models

Another tool that should be used for life prediction of solder ball components due to thermomechanical loading is life prediction models [34]. Life prediction models are tools that extract life cycle information about solder materials using the material properties and the damage parameters resulting from calculations, e.g. plastic strain range, shear strain range etc.

X. Xu et. al. [23] performed a life prediction study based on FE simulation using accurate material and life prediction model. The system was modeled in FE environment and the solution was performed using AV material model for solder material. With the solution, the plastic strain range was found in the solder ball. Then, with the Engelmaier modified Coffin-Manson model used as a life prediction model, the life cycle prediction results of the most critical ball were calculated and revealed.

Following the literature review, it is noticeable that CM [10-14,21,29,30] and ECM [11,12,13,23,25] lifetime prediction models are the most commonly used tools for life estimation of solder balls due to thermomechanical loading. It is stated that ECM is the preferred model as it includes the temperature range and frequency of the applied temperature cycle in the lifetime calculations [12]. In the next section, ECM is explained.
2.4.1 Engelmaier Modified Coffin-Manson Life Prediction Model

The Engelmaier modified Coffin-Manson equation used in the determination of the life of solder balls due to temperature cycles is as follows [35]

$$N_f = \frac{1}{2} \left(\frac{\Delta \gamma}{2\epsilon'_f} \right)^{\frac{1}{c}}$$
(2.4.1)

Where N_f is the number of cycles to failure, ϵ'_f is the fatigue ductility coefficient which is a material parameter and $\Delta \gamma$ is the shear strain range which is calculated by Eq. (2.4.2)

$$\Delta \gamma = \sqrt{3} \Delta \varepsilon \tag{2.4.2}$$

Where $\Delta \varepsilon$ is equivalent strain range, which can be found from cyclic stress-strain hysteresis loops of solder balls and *c* is fatigue ductility exponent which can be calculated by Eq. (2.4.3)

$$c = -0.442 - 6 \times 10^{-4} T_m + 1.74 \times 10^{-2} \ln(1+f)$$
(2.4.3)

where T_m is the mean temperature of the applied cyclic temperature range and f is the frequency of applied temperature profile.

ECM model can be considered as an extension of the CM model. It includes the average temperature in the temperature profile applied to the solder balls and frequency effects in the lifetime calculation. Basically, the damage parameter it uses is the strain range, so this is a strain-based method. In Fig. 7, generic hysteresis curve for viscoplastic materials under thermomechanical loading is illustrated [36] and representative total and plastic strain ranges could be seen.

Figure 7. Typical stress-strain hysteresis loop of viscoplastic materials and total and plastic strain ranges [35]

2.5 Global-Local Modelling Approach for Finite Element Analysis

Within the scope of this thesis, the FE analysis of solder balls was evaluated with a global-local approach. Therefore, the existence and suitability of such a study was investigated in the literature.

Basically, global-local modeling approach in FE analysis is technique that helps analyzing relevant portion (local) of a larger model (global) with refined mesh and hence acquiring more accurate and detailed results within this portion of interest.

Global model is solved first with a coarser mesh to acquire displacement or temperature results. Afterwards, these results are mapped to local model at the cut boundary faces to analyze the response of the portion with denser mesh. It is most useful for obtaining accurate results while keeping the computation time as low as possible. C. Chen et. al. [27] investigated the relationship of the global-local approach in the analysis of solder balls in FE environment. They performed their analysis according to the output value of inelastic strain energy density in solder balls. It is shown that the global-local analysis result changes only by 2.4% compared to the global model result with the same settings, but the analysis solution time is reduced by 75 times.

In addition, they stated that the aspect ratios of the solder ball and UBM structures, which are small compared to the global model dimensions, are close to 25 during mesh creation in the global model, while this value decreases to 5 in the local model. This would be useful to improve the accuracy of solutions with the local model.

In the literature, there are also optimization studies with the global-local approach. A. Deshpande [37] performed an optimization study to determine the optimal solder ball dimensions in terms of lifetime in a structure consisting of PCB, electronic package, and solder balls. In the study using global-local approach, the global model was solved and then the most critical solder ball was found and then that region was modeled locally. With the optimization in the local model, the dimensions that will have the lowest strain energy density under temperature variation were determined.

CHAPTER 3

FINITE ELEMENT MODEL VALIDATION

Within the scope of this thesis, TMF life prediction of solder balls in a specially designed electronic package has been carried out by FE simulations. Before starting the studies, the path was followed according to the conclusions learned from the literature survey.

Following the literature survey, conclusions given below were drawn:

- FE simulations is going to be used to find the lifetime of solder balls.
- In FE simulations, both AV and EP models will be used as material model of solder balls to extract the stress & strain results.
- Engelmair modified Coffin-Manson fatigue life prediction model will be used to generate lifetime results.

When producing an electronics package, laying down the solder balls, postprocessing and assembling the structures in the package are costly activities. Along with this consideration, [23] X. Xu et. al. stated the difficulty of doing experimental work in life determination studies of solder balls that are subjected to thermomechanical loading. For this reason, the optimization and finding the best solder ball geometry is carried out by FE simulations in this thesis.

Before simulating and optimizing the structure of interest, a benchmark study is required to validate our FE modeling and solution capabilities. When the literature is examined, it is seen that there is no experimental study that will include all the details necessary to make the mentioned verification. The missing details include some of the dimensions of the test sample, the material type information of some components, etc. It seems that the literature is incomplete in this respect. Like the experimental studies, FE simulation-based studies also seem to lack sufficient information to validate our own model. For example, the material type and dimensions of the components in the FE model is missing in [12,20].

Although all the necessary information is not fully provided, information in [21] is nearly complete for benchmarking at a certain level. This study has been attempted to be repeated with the data provided and the lifetime on the most critical solder ball has been extracted.

3.1 Benchmark Study

H. Chunyue [21] performed the lifetime analysis of solder balls in a 144-Pin plastic ball grid array structure integrated on printed circuit board with two different solder ball materials (63Sn37Pb, 96.5Sn3.5Ag). In this FE simulation-based study, AV was used as the material model and ECM was used as the life prediction model. Material properties for both materials are given in the related article. The boundary condition and applied temperature profile information required for the repetition of the simulations were defined, but the geometric dimensions of the modeled components were not fully defined. The missing dimensions were estimated by considering the figures and images in the article.

Separate reruns have been carried out for two different material types found in the related study. For this, an FE model was tried to be constructed and then the analysis results were obtained by changing the material assignment of the solder balls. These analysis results were then used in ECM to obtain the life results and compared with the values in the paper.

ANSYS 2023R2 has been used in FE simulations. The program has the AV material model in its embedded library. With the convenience provided by this program, there is no need to write a material model again and it can be directly applied to the solder balls in the analysis.

Hereafter, studied model in the article [21] and the constructed model are going to be called as Model A and Model B, respectively. Fig. 8 shows the computer aided design images of Model A and Model B.

Figure 8. Quarter model CAD images of Model A [21] (a) and Model B (current study) (b)

The Model B was first generated in accordance with Model A's given physical dimensions and then evolved into a quarter model to form the symmetry surfaces

specified in the article. In Table 3, original dimension comparison of the models can be seen. Some of the dimension in the Model A is not available (N/A), thus they are guessed according to given images in the article.

Dimonsion Namo	Dimension Value (mm)		
	Model A	Model B	
EMC thickness	N/A	0.95	
EMC planar	13x13	13x13	
BT thickness	N/A	0.38	
BT planar	13x13	13x13	
EMC+BT thickness	1.33	1.33	
Solder ball diameter	0.6	0.6	
Solder ball height	0.5	0.5	
Solder ball pitch	1	1	
FPC thickness	N/A	0.27	
FPC planar	N/A	15x15	

Table 3. Original dimensions of the Model A and Model B.

Fig. 9 shows the FE models of Model A and Model B. In Table 4, FE model property comparison can be seen. For simulations of Model A, ANSYS V11.0 is used [21].

Table 4. Finite element properties of the Model A and Model B.

	Model A	Model B
Element type for solder balls	VISCO107	SOLID 186
Element type for rest of the	SOLID45	SOLID186 &
model		SOLID 187
Total number of elements	253652	222148

Figure 9. Quarter finite element model of Model A (a) and Model B (b)

Contact and mesh interaction information of Model A are not given. Also, there is no image or figure to demonstrate mesh and contact configuration of the solder balls closely. In Model B, conformal mesh is used between components. Fig. 10 shows the conformal mesh transition.

Figure 10. Side view of Model B's mesh model, the transition of mesh

Fig. 11 shows the applied temperature profile in both models A and B. They are exactly the same. Temperature profile has higher extreme at 125 °C and lower extreme at -55 °C. Initial temperature for the bodies are selected as 125 °C for Model A and B so they are in stress-free state initially.

In [21] and other studies in the literature, it is seen that the material behavior reaches steady state after the first 3 cycles and there is no further change in the hysteresis loops and strain ranges [7,17,20] in the subsequent cycles. For this reason, 3 cycles are selected in the temperature applications to find the strain range values to be used in ECM. This approach saves a long numerical solution time.

Additionally, material properties specified in Model A is used exactly at Model B's simulations. In Model A, only solder balls are modeled with AV, other components are assumed to behave linear isotropic. In Tables 5 and 6, material properties of the components used in Model A [21] can be seen. Term *t* is temperature in $^{\circ}$ C.

Figure 11. Applied temperature cycle profiles of (a) Model A and (b) Model B Table 5. Elastic and thermophysical material properties of Model A components

Material	Elastic Modulus	Poisson's	Coefficient of Thermal
	(GPa)	Ratio	Expansion (ppm/°C)
EMC	15.435	0.250	15.0
BT	17.8	0.390	15.0
FPC	3.724	0.335	15.0
67Sn37Pb	(34474-152 <i>t</i>)/1000	0.35	21.0
96.5Sn3.5Ag	(52708-67.14 <i>t</i> -	0.4	21.85+0.02039 <i>t</i>
	0.0587 <i>t</i> 2)/1000		

Then, the FE simulation settings specified in the article [21] were similarly adjusted

- Symmetry planes are constrained with "frictionless support" which only allows them to make in-plane motions
- Stress free state is selected at 125 °C, it is starting temperature point of the simulations

and the calculations were performed. The relevant results were extracted from the solder ball that showed maximum strain throughout the cycles as stated in the article. Then, the maximum output values in this solder ball were again compared with the results of Model A. First, the solder ball material was chosen as 63Sn37Pb to compare the results.

Paramatars	Solder Material		
1 al ameters	67Sn37Pb	96.5Sn3.5Ag	
s ₀ (MPa)	12.41	39.09	
<i>Q/R</i> (K)	9400	8900	
A (1/s)	4.0E6	2.23E4	
ξ	1.5	6	
т	0.303	0.182	
h_0 (MPa)	1378.95	3321.15	
<i>ŝ</i> (MPa)	13.79	73.81	
n	0.07	0.018	
а	1.3	1.82	

Table 6. Anand viscoplasticity material properties for two different solder materials

As a reminder, Model A's results are gathered from article [21]. Model B is constructed model and its results are generated.

In Fig. 12, location of critical solder ball of the Model B is shown. Red label with name Max in Fig. 11 shows the most critical point of Model B through the temperature cycles. Unfortunately, the most critical point in Model A is not shown in the article.

In Fig. 13 the time-dependent Von-Misses equivalent stress result at the most critical point is extracted and compared with the curve in the article. Fig. 13a and Fig. 13b show the results of Model A and Model B, respectively. It is seen that in Model A, maximum stress is around 44 MPa and in Model B, the maximum stress is around 41 MPa through the cycles. For both results, maximum stress is increasing with each cycle.

Figure 12. Critical solder ball location of Model B throughout the analysis

Figure 13. Equivalent stress at the critical point throughout the temperature cycles (63Sn37Pb); (a) Model A [21], (b) Model B

In Fig. 14, the time-dependent VM equivalent plastic strain result at the same critical point was extracted and compared with the curve in the article. Fig. 14a and Fig. 14b show the results of Model A and Model B, respectively. Maximum strains are 1.35E-

03 for Model A and 1.25E-03 for Model B. For Model A, maximum strain is decreasing for each cycle, however for Model B maximum strain is increasing.

Figure 14. Equivalent strain at the critical point throughout the temperature cycles (63Sn37Pb); (a) Model A, (b) Model B

For material 63Sn37Pb after analyzing the results Fig. 13 and Fig. 14, it can be concluded that at low temperature dwell times, solder ball exhibits both creep and

stress relaxation behavior. Stress is decreasing and plastic strain is increasing. However, for high temperature dwell times it only exhibits stress relaxation. Stress is decreasing and strain is also decreasing.

In Fig. 15, the stress-strain hysteresis loop at the same critical point was extracted and compared with the curve in the article. Fig. 15a and Fig 15b show the results of Model A and Model B, respectively. There is a shape difference between curve results of the Model A and Model B. Possible causes of this difference are explained later in this chapter.

Secondly, 96.5Sn3.5Ag material was chosen for the solder balls to compare the results. Similar to the 63Sn37Pb material type, the stress and strain values in the most critical solder ball were plotted and compared with the corresponding curves in the article [21].

Fig. 16, the time-dependent VM equivalent stress result at the most critical point was extracted and compared with the curve in the paper. Fig. 16a and Fig. 16b show the results of Model A and Model B, respectively.

Figure 15. Equivalent stress vs equivalent strain hysteresis loop (63Sn37Pb); (a) Model A, (b) Model B

Figure 16. Equivalent stress at the critical point throughout the temperature cycles (96.5Sn3.5Ag); (a) Model A, (b) Model B

In Fig. 17, the time-dependent equivalent plastic strain result at the same critical point was extracted and compared with the curve in the article. Fig. 17a and Fig. 17b show the results of Model A and Model B, respectively.

Figure 17. Equivalent strain at the critical point throughout the temperature cycles (96.5Sn3.5Ag); (a) Model A, (b) Model B

For material 96.5Sn3.5Ag after analyzing the results Fig. 16 and Fig. 17, it can be concluded that at low temperature dwell times, solder ball exhibits both creep and stress relaxation behavior. Stress is decreasing and plastic strain is increasing. However, for high temperature dwell times it only exhibits stress relaxation. Stress is decreasing and strain is also decreasing.

In Fig. 18, the stress-strain hysteresis loop at the same critical point was extracted and compared with the curve in the article. Fig. 18a and Fig. 18b show the results of Model A and Model B, respectively.

The hysteresis loops extracted for both material types were used to find the strain range values (Fig. 15b, 18b). These strain range values were then used in the ECM life prediction model (Eq. 2.4.1) as mentioned in the article. In the ECM equation the ϵ'_f value is taken the same as in the paper [21] (Table 7).

Figure 18. Equivalent stress vs equivalent strain hysteresis loop (96.5Sn3.5Ag); (a) Model A, (b) Model B

Material Type	Parameter ϵ'_f
63Sn37Pb	0.323608
96.5Sn3.5Ag	0.323643

Table 7. Solder material type and associated fatigue ductility coefficient

To find life cycles values of solder balls, Eq. 2.4.1 with Eq. 2.4.3 and material property ϵ'_f are used. For example, life calculation of critical solder ball with material 63Sn37Pb was made as follows. And the calculation for the other material was done in the same way.

Starting with Eq.2.4.3 to find value *c*.

$$c = -0.442 - 6 \times 10^{-4} T_m + 1.74 \times 10^{-2} \ln(1+f)$$
 (2.4.3)

$$T_m = \frac{T_{max} + T_{min}}{2} \tag{3.1.1}$$

$$T_m = \frac{125 - 55}{2} = 35 \tag{3.1.2}$$

Where T_m is the average of the temperature profile extreme values and f is the frequency of the temperature profile, $f = 48 \left(\frac{cycles}{day}\right)$, thus c = -0.395.

And using equation $\Delta \gamma = \sqrt{3}\Delta \varepsilon$ to find plastic shear strain range to use in Eq.2.4.2.

$$\Delta \gamma = \sqrt{3} \Delta \varepsilon = \sqrt{3} * 1.01 * 10^{-3} = 1,75 * 10^{-3}$$
(3.1.3)

And finally substituting all the generated and found values into Eq.2.4.1.

$$N_f = \frac{1}{2} \left(\frac{\Delta \gamma}{2\epsilon'_f} \right)^{\frac{1}{c}} = \frac{1}{2} \left(\frac{1.75 \times 10^{-3}}{2 \times 0.323608} \right)^{\frac{1}{-0.395}} = 1.58 \times 10^6 \ cycles \qquad (3.1.4)$$

The strain range and life values specified for both material types in [21] are given in Table 7. At the same time, the values obtained from calculations in the current model are also added to the table.

		Strain R	ange ($\Delta oldsymbol{arepsilon}$)		Life (Cycles)	
Simulati	Solder	Model A	Model B	Model A	Model B	Difference
on	Material					(%)
1	63Sn37	9.11E-04	1.01E-03	2.06E+06	1.58E+06	23.3
1	Pb					
2	96.5Sn3.	1.53E-03	1.69E-03	5.50E+05	4.32E+05	21.5
Ζ	5Ag					

Table 8. Comparison of values between Model A and Model B

From the results, it seems that the lifetimes for different solder ball materials are not very different from each other. For example, in simulations using 96.5Sn3.5Ag material, the life difference between our calculation and the one in the paper is 21.5%. Potential reasons for these differences are listed below:

- Planar dimensions of FPC component are not given, they are guessed,
- Thickness values of the components are not given, they are guessed,
- Mesh model quality and solver settings may be different, solver settings of Model A are not known.

As a result of this validation study, FE modeling and simulation capabilities were thought to be confirmed and further studies could be confidently undertaken.

In addition, when the hysteresis loop is examined after the solution was made with the Model B, it is seen that those result curves are similar to the results in a study in the literature [18] (Fig.19). With this referenced study [18], it is accepted that the curves similar to the hysteresis loop in the [21] did not appear, but the strain range values were close. Those shape differences were possibly taking place due to the three reasons mentioned above.

Figure 19. Stress vs strain hysteresis loop result using Anand viscoplastic model in [18].

CHAPTER 4

FINITE ELEMENT SIMULATION AND OPTIMIZATION WITH AV MATERIAL MODEL

After the completion of benchmark study and no major problems were observed in comparison between results of Model A and Model B, similar type of simulation and optimization study of the structure under consideration have been carried out by using AV material model.

The structure studied is an electronic package with 144 connection BGA (12x12). The CAD image of the related structure is shown in Fig. 20. Fig. 21a shows a cross-sectional view of the structure with the vertical plane passing through the center of one row of solder balls, Fig. 21b shows a close-up cross-sectional view of the solder ball and UBM components. The names of the components are indicated with arrows in Fig. 20 and Fig. 21b. The CAD of the structure was made in PTC Creo 9.0 program.

Figure 20. CAD image of electronic package with 144 connection BGA with names of components indicated.

(b)

Figure 21. (a) Cross-sectional view of structure under consideration, (b) close-up cross-sectional view of solder ball and UBM with names of components indicated

The name and associated material of the components that make up the structure are shown in Table 9.

Component Name	Material
Carrier ceramic	Alumina (Al ₂ O ₃)
Bond pad 1	Gold
UBM 1	Nickel
UBM 2	Gold
Solder mask	Solder paste
Solder ball	SAC305
UBM 3	Gold
UBM 4	Nickel
UBM 5	Titanium
Bond pad 2	Aluminum
Passivation layer	Silicon dioxide
Die	Silicon

Table 9. Names of the components in the interested structure and their associated materials

Firstly, AV material model was used for solder balls during the simulations. The other components were found to demonstrate linear elastic behavior by pre-analysis and only linear elastic material properties were defined for these components. The linear elastic and CTE properties of the materials are given in Table 10 and the AV material properties of SAC305 are given in Table 11.

Material	Elastic	Poisson's	Coefficient of Thermal
	Modulus (GPa)	Ratio	Expansion (ppm/°C)
Alumina [17]	310	0.27	5.5
Gold [38]	80	0.3	14
Nickel [39]	207	0.31	13.1
Solder paste [27]	3.1	0.3	16.3
SAC305 [12]	51	0.4	23.5

Table 10. Elastic and thermophysical properties of used materials

Material	Elastic	Poisson's	Coefficient of Thermal
	Modulus (GPa)	Ratio	Expansion (ppm/°C)
Titanium [39]	116	0.34	8.9
Aluminum [39]	68	0.36	24
Silicon dioxide [40]	70	0.16	6
Silicon [12]	110	0.24	2.6

Table 10 (continued). Elastic and thermophysical properties of used materials

Table 11. AV material model properties of SAC305 material

Anand Parameters	SAC305 [12]
s ₀ (MPa)	45.9
<i>Q/R</i> (K)	7460
A (1/s)	5.86E06
ξ	2
т	0.0942
h_0 (MPa)	9350
<i>ŝ</i> (MPa)	58.3
n	0.015
а	1.5

Within the scope of this thesis, an optimization study was carried out according to the input parameters

- Solder ball diameter and height
- UBM thicknesses
- Bond pad thicknesses

and the design configuration with the highest lifetime was tried to be found. As it is known from the Eq. 2.4.1, lower strain range means higher lifetimes.

Dimension values of the components which are used in original electronic package are shown in Table 12 and 13. In Table 12, dimensions whose values will remain constant during optimization are shown. And in Table 13, dimensions whose values will be optimized are shown.

optimizations.

 Component
 Dimensions (mm)

Table 12. Dimensions of the components whose values will remain constant during

Component	Dimensions (mm)
Carrier ceramic	R6x1
Solder paste	R6x1
Solder ball pitch	0.5
Passivation layer	6.5x6.5x0.03
Die	6.5x6.5x0.03

Table 13. Original dimensions of the components whose values will be optimized

Dimension	Value (µm)
Bond pad 1 thickness	12.5
UBM 1 thickness	12.5
UBM 2 thickness	4
Solder ball radius	130
Solder ball height	140
UBM 3 thickness	4
UBM 4 thickness	12.5
UBM 5 thickness	10
Bond pad 2 thickness	17.5

A global-local FE model approach was applied in the optimization study. In the global model, the mesh quality metrics appears to be low due to the small sizes of the UBM parts and bond pads compared to the other components and their high diameter-to-thickness ratios. When it is desired to increase the mesh quality for these

parts, the total number of elements increases very much. This causes longer solution times and makes the optimization study inefficient. For this reason, it was decided that the optimization study could not be done with the global model, and it was decided to create a local model using the results from the global model.

4.1 Global Model Simulation

Before proceeding to the local model, the solution was obtained in the global model. The original structure was converted into a quarter model (Fig. 22) and then the mesh model was generated for numerical calculations (Fig. 23). Meshing is done with conformal mesh type for global and local models, thus contact application was not needed. The total number of elements becomes 329395. Table 14 shows the mesh element types used in the global model.

Figure 22. Converting original structure to quarter model to form global model (Die is transparent to show to solder balls), (a) original model (b) quarter model

Table 14. Element types used in the global model.

Element Type	Applied Components
SOLID186	UBM1-5, bond pad 1-2, solder ball, solder mask, passivation
	layer
SOLID187	Carrier ceramic, die

In simulation setup:

- MIL-STD-883 standard [41] was selected as the applied temperature profile (Fig. 11).
- Temperature profile are applied for all the bodies which means all the nodes in the global model has the same temperature value at the same time step.
- Symmetry surfaces are bounded with "frictionless support" boundary condition that allows them to move only in those surface planes (Fig. 24).
- In order to reduce the degree of freedom of the model in space, the lower intersection point of the symmetry surfaces is fixed with "fix support" boundary condition to fix that point in space (Fig. 24).
- The material properties of the components have been defined in accordance with the values in Tables 10 and 11.

Figure 24. Boundary conditions of the global model

The global model was solved with the aforementioned setup. According to the result, the highest plastic strain values were found in the solder ball furthest from the center

(Fig. 25) through the temperature cycles. That is possibly because of the high displacement difference between upper and lower interfaces of the solder bump. Because at the location of the critical solder ball displacement difference between Die and Ceramic bodies are maximized due to different CTE's bodies have.

Figure 25. Critical solder ball in the global model during the temperature cycles

4.2 Local Model Preparation

After finding the most critical solder ball in the global model, a local model of this critical ball was created. When creating the local model, the cutting surfaces were chosen to be 0.25 mm away from the center of the critical solder ball [27]. This value is half of the pitch value of 0.5 mm. Fig. 26a and Fig. 26b shows the location of the cutting surfaces in the top view of global model and the generated local model of critical solder ball, respectively.

Figure 26. (a) Locations of cutting surfaces in the top view of global model (Die is transparent to show solder balls), (b) local model in isometric view

The displacement results in the global model are mapped to the cutting surfaces of the local model as boundary conditions. Therefore, no additional boundary condition is needed to be defined in the local model.

Also, the temperature load condition (Fig. 11) are defined to be consistent with the mapped displacement boundary conditions. For example, mapped displacement and temperature data at 5400 seconds of the local model are shown in Fig. 27a and Fig. 27b, respectively. In other words, for each second of the local model simulation, consistent boundary and load condition are applied which are originally applied in the global model.

Figure 27. At 5400 seconds of the simulation, defined (a) displacement boundary condition and (b) temperature load condition

4.2.1 Mesh Dependency

Before proceeding to the optimization study, a mesh dependency study was performed in the local model. The maximum strain range value observed in the solder ball in the third cycle was taken as the control output [7,17,20,21].

In this study, it is aimed to avoid not only inaccurate results due to low element numbers but long computation times with unnecessarily high element numbers during optimization as well. Fig. 28 shows the variation of strain range value and solution time in seconds according to the total number of elements in the mesh.

Figure 28. Variation of strain range and computation time values with respect to total number of elements of the local model mesh

When the graphs are examined, the strain range value increases with the number of elements in the model, but there is no significant increase after a certain value. This value corresponds to approximately 6200 elements. On the other hand, the solution time increases significantly with the number of elements and there seems exponential relationship between them.

In the light of this information, the elements in the local model was chosen as 6212. Thus, the optimum point was found by considering the strain range value and
solution time. SOLID186 element type is used and in Fig. 29a and Fig. 29b mesh structure of the local model with 6212 elements can be seen.

Figure 29. Mesh structure of the local model, (a) in isometric view, (b) in close-up view

4.3 Design of Experiment

Design of Experiment with Response Surface approach was used in the optimization study. In Fig. 30, visual summary of response surface optimization sequence in ANSYS can be seen. Also, ANSYS WB project schematic of the applied study can be seen in Appendix A.

Figure 30. Workflow of response surface optimization study in ANSYS

DOE method is a tool used to define the relationship between design variables (input variable) and objectives (output variable) in processes or simulations where there is more than one design variable. With the DOE method, the design space is effectively scanned, and a statistical model can be established between design variables and objectives.

The DOE method is useful in situations where limited simulations or tests can be performed. The main idea is to minimize the number of points in the design space where solutions and results are obtained and generating a statistical model with low uncertainty. Then this model can be used to generate results at different design points.

The DOE method is embedded in the ANSYS Workbench program. Design points were generated using the ANSYS WB DOE tool. When generating design points, the value ranges of each design variable must be supplied. The definition and value ranges of the input parameters are listed in Table 15.

Parameter Name	Definition	Range (µm)
P1	Bond pad 1 thickness	10-15
P2	UBM 1 thickness	10-15
P3	UBM 2 thickness	3-5
P4	Solder ball radius	110-150
P5	Solder ball height	100-180
P6	UBM 3 thickness	3-5
P7	UBM 4 thickness	10-15
P8	UBM 5 thickness	5-15
P9	Bond pad 2 thickness	10-25

Table 15. Dimension ranges of parameters used in DOE/optimization study

Another setting to be determined is how the design points will be distributed in the design space. For this, the Optimal Space Filling option was selected with 147 design points. OSF with central composite design creates 160 design points as a raw data however 13 points are the same design points in the design space. In real, physical experiments these points are necessary to account for experimental errors and uncertainties. In simulations however, since corresponding simulations would give the same result these points are not necessary. Thus these 13 points eliminated and rest is processed. The generated and solved design points can be seen in Appendix B. Also, as a design type ANSYS use Face-centered option and with that Alfa value becomes 1.

The OSF option enables the design points in the design space to be placed equally distant from each other. For example, Fig. 31 shows the distribution of design points in a design space with two parameters (P1 & P2). In this way, the design space is scanned in general and the probability of not capturing global maximum and minimum objective values is reduced. Another advantage of this method is that the same parameter value only occurs in one design point. Two different design points do not share the same parameter value.

Figure 31. Two parameter design point distribution in design space with OSF method. Points are placed equally distant from each other [42]

4.4 Response Surface

After the results of design points were found by DOE, an RS was generated using these points. RS can basically be considered as a tool that covers the design space and construct a mathematical continuous model between design variables and objectives.

ANSYS Workbench includes a built-in RS generating tool. Non-parametric regression option was selected as the RS type to be created. This method creates a band with an error value of $\pm \varepsilon$ that contains the design points and generates the RS in the center of this band. Fig. 32 shows an example of the RS (redline) generated by the NPR method.

Figure 32. Generic figure to show how RS is generated with using NPR method [43]

The generated RS does not need to pass through each design point. For this reason, the generated RS should be checked for statistical accuracy. The goodness of fit values of the generated RS are shown in Fig. 33.

 Coefficient of Determ 	nination (Best Value = 1)						
Learning Points	🔆 0,998						
Root Mean Square Er	Root Mean Square Error (Best Value = 0)						
Learning Points	Learning Points 5,2323E-05						
Relative Maximum Ab	osolute Error (Best Value = 0%)						
Learning Points	🛨 4,6966						
Relative Average Absolute Error (Best Value = 0%)							
Learning Points	🛨 4,3588						

Figure 33. Goodness of fit values of generated RS

When the metrics are analyzed, the following conclusions are obtained:

- Coefficient of determination value is close to 1 (Best value = 1).
- Root mean square error value is close to 0 (Best value = 0).
- Relative maximum absolute error value is close to 0 (Best value = 0).
- Relative average absolute error value is close to 0 (Best value = 0).

In addition, the real result values of the design points (see Appendix A) were compared with the result values obtained from RS using the same input parameters. Fig 34 shows the scatter plot generated by the comparison. The black solid curve with a slope value of 1 shows the ideal situation where the real solution value and the value found from RS are equal at each point. There seems distribution of green points is close to the ideal line.

Figure 34. Distribution of the design points in the graph whose x axis shows the real solution values for the plastic strain range and y axis shows the values found from RS.

Another result that can be drawn is how much the change in each parameter affects the strain range output. Fig. 35 shows the sensitivity ratios of the parameters in the form of a pie chart. When the chart is analyzed, it is seen that the strain range output is most sensitive to solder ball height (P5).

Figure 35. Pie chart that shows the sensitivity of the input parameters to strain range

After the statistical evaluation and having confidence in the generated RS the optimization part was started.

4.5 Optimization

The optimization tool is embedded in ANSYS WB. Multi-Objective Genetic Algorithm (MOGA) is chosen as the algorithm type. This method goes through many iterations trying to find the best result. In each iteration, it finds the best results and uses these results with the best ones from the previous iteration to determine where to go in the next iteration. In this way, it tries to achieve the best result repeatedly. This algorithm avoids focusing on local minimum and maximum, thus increases the chances of finding global minimum and maximum [44].

Also, to ensure the convenient manufacturability of the best configuration to be found, certain interval sizes are defined for parameter values in optimization. In Table 16 interval sizes can be seen for parameters. In other words, parameter values change with these defined values between optimization calculations. Table 16. Specified interval sizes for parameter values changes accordingly between optimization calculations

Parameter Name	Interval Size (µm)
P1-3, P6-9	0.01
P4-5	0.1

After 20 iterations and 28413 evaluations, the geometric configuration with the lowest strain range value was obtained as a result of optimization. In Fig. 36, the relevant configuration appears as "Candidate Point 1". According to the calculation, the resulting strain range value is 0.01516. In order to check the accuracy of the result, the analysis was run again at the relevant parameter values and the strain range value was found 0.016387. The difference between them is 7.7%. This difference was considered acceptable, and it was decided that the best configuration, considering the lowest strain range, was found.

 Optimization Study 							
Minimize P4	Goal, Minimize P4 (Defa	Goal, Minimize P4 (Default importance)					
 Optimization Method 							
MOGA	The MOGA method (Multi-Objective Genetic Algorithm) is a variant of the popular NSGA-II (Non-dominated Sorted Genetic Algorithm-II) based on controlled elitism concepts. It supports multiple objectives and constraints and aims at finding the global optimum.						
Configuration	Generate 9000 samples	initially, 1800 samples per iter	ation and f	înd 3 candidates in a ma	aximum of 20 iterations		
Status	Converged after 28413	evaluations.					
= Candidate Points							
	Candidate Point 1	Candidate Point 1 (verified)	DP 143	Candidate Point 2	Candidate Point 3		
P5 - t_1 (um)		12,08			12,03		
P6 - t_2 (um)	12,62 12,61 12,53						
P7 - t_3 (um)		4,3		4,27	4,38		
P8 - radius (um)		149,4		149,7	149,3		
P10 - t_4 (um)		4,26		4,29	4,34		
P11 - t_5 (um)		12,7		12,77	12,83		
P12 - t_6 (um)	10,36 10,32 10,48						
P13 - t_7 (um)		17,94		17,93	17,88		
P14 - height (um)		176,7		179,3	177,7		
P4 - Strain Range (um um^-1)	- 0,015216	- 0,016387		- 0,015232	- 0,015235		

Figure 36. ANSYS optimization result showing the best geometric configuration with name "Candidate Point 1"

The values of the parameters in the best configuration are shown in Table 17.

Parameter Name	Definition	Value (µm)
P1	Bond pad 1 thickness	12.08
P2	UBM 1 thickness	12.62
P3	UBM 2 thickness	4.3
P4	Solder ball radius	149.4
P5	Solder ball height	4.26
P6	UBM 3 thickness	12.7
P7	UBM 4 thickness	10.36
P8	UBM 5 thickness	17.94
P9	Bond pad 2 thickness	176.7

Table 17. Parameter values of the best configuration

Fig. 37 shows the change of strain range values during iterations.

Figure 37. Change of strain range value during the optimization iterations In addition, the change of each parameter value over the iterations is shown in Fig. 38a-i.

(c)

Figure 38. Change of each parameter value over the optimization iterations; (a) P1, (b) P2, (c) P3, (d) P4, (e) P5, (f) P6, (g) P7, (h) P8, (i) P9

Figure 38 (continued). Change of each parameter value over the optimization iterations; (a) P1, (b) P2, (c) P3, (d) P4, (e) P5, (f) P6, (g) P7, (h) P8, (i) P9

4.6 LifeTime Result of Solder Ball in the best Geometric Configuration

According to the results obtained with parameters in Table 17, it was seen that the most critical point on the solder ball is the outermost diameter of the surface where the ball comes into contact with UBM 3 (Gold) (Fig. 39).

Figure 39. Most critical point appears in the upper contact surface and at the outermost diameter

Fig. 39a shows the equivalent stress vs equivalent strain curve of critical point for 3 cycles in ANSYS WB environment. Fig. 40b shows the values in the third cycle plotted in isolation and the strain range value is shown.

This strain range value was then used for lifetime prediction. ECM was used as the lifetime prediction model (Eq. 2.4.1)

$$N_f = \frac{1}{2} \left(\frac{\Delta \gamma}{2\epsilon_f'} \right)^{\frac{1}{c}}$$
(2.4.1)

Equivalent strain range value was converted to equivalent shear strain range using Eq. 2.4.2.

$$\Delta \gamma = \sqrt{3} \Delta \varepsilon = \sqrt{3} * 1.6387 * 10^{-2} = 2.8383 * 10^{-2}$$
(4.6.1)

Figure 40. Equivalent stress vs equivalent strain curves; (a) generated in ANSYS WB to show behavior of the 3 cycles, (b) third cycle isolated to show equivalent strain range

And with Eq. 2.4.3 value *c* can be found.

$$c = -0.442 - 6 \times 10^{-4} T_m + 1.74 \times 10^{-2} \ln(1+f)$$
 (2.4.3)

$$T_m = \frac{T_{max} + T_{min}}{2} \tag{4.6.2}$$

$$T_m = \frac{125 - 55}{2} = 35 \tag{4.6.3}$$

Where T_m is the average of the temperature profile extreme values and f is the frequency of the temperature profile, $f = 48 \left(\frac{cycles}{day}\right)$, thus c = -0.395.

And finally substituting all the generated and found $(2\epsilon'_f = 0.48 \ [12])$ values into Eq. 2.4.1.

$$N_f = \frac{1}{2} \left(\frac{\Delta \gamma}{2\epsilon'_f} \right)^{\frac{1}{c}} = \frac{1}{2} \left(\frac{2.8383 \times 10^{-2}}{0.48} \right)^{\frac{1}{-0.395}} \cong 643 \ cycles \tag{4.6.4}$$

As a result, it was concluded that in the best geometrical configuration, the solder ball has a lifetime of 643 cycles.

CHAPTER 5

FINITE ELEMENT SIMULATION AND OPTIMIZATION WITH EP MATERIAL MODEL

In Chapter 4, AV material model was defined for SAC305 material and optimization study was performed. In this chapter of the thesis, the EP material model for SAC305 material is defined and the optimization study is repeated.

The material test data of the SAC305 solder ball was obtained from the literature [45]. Fig. 41 shows the true stress-strain curve of SAC305 and other solder material types in compressive test.

Figure 41. Curves of SAC305 and other solder material types in compressive test [45]

The EP material model is embedded in ANSYS WB. It is sufficient to provide parameter values for the relevant material. Multilinear kinematic hardening was selected as hardening type [28]. Table 18 shows the multilinear kinematic hardening values specified for SAC305 material. The values in Table 10 were used for elastic linear properties of SAC305.

Plastic Strain	Stress (MPa)
0	41.2
8.32E-03	45.1
1.64E-02	47.6
2.91E-02	49.4
4.44E-02	50.4
5.83E-02	51.0
7.28E-02	51.1

Table 18. Multilinear kinematic hardening material model properties of SAC305

In order to compare the results of the study with both material models with maintaining consistency, no changes were made in the settings of loading, global-local approach, mesh, parameter and optimization. The procedure followed in this chapter are listed and explained below.

- 1. The same material properties were used for all other materials except SAC305 (Table 10).
- 2. Temperature loading profile is kept the same (Fig. 11).
- The same mesh models are used in the global and local model (Fig. 23,29, Table 14).
- 4. The analysis of the global model shows that the most critical solder ball is the outermost one (Fig. 43). For this reason, the cutting surfaces and data transfers in the global local transitions were made to be the same as in the previous chapter.
- 5. Same WB project schematic is used (Appendix C)

Figure 42. Critical solder joint in the simulation of the global model

5.1 Design of Experiment

After finding the most critical solder ball in the global model and creating a local model accordingly, a DOE study was performed. In the DOE study, the settings were kept the same as in Chapter 4.

- The value ranges of 9 different input parameters are given in Table 15.
- 147 design points were created with OSF method (Appendix C).

5.2 Response Surface

The design point results obtained with DOE were used to generate the RS. The NPR method was used, and the accuracy of the generated RS was checked with statistical metrics (Fig. 43, 44).

Coefficient of Dete	rmination (Best Value = 1)				
Learning Points	0,99809				
Root Mean Square	Error (Best Value = 0)				
Learning Points 0,00011951					
Relative Maximum /	Absolute Error (Best Value = 0%)				
Learning Points	× 4,617				
 Relative Average A 	bsolute Error (Best Value = 0%)				
Learning Points	× 4,2973				

Figure 43. Goodness of fit values of generated RS

Figure 44. Distribution of the design points in the graph whose x axis shows the real solution values for the plastic strain range and y axis shows the values found from RS.

Another result that can be drawn is how much the change in each parameter affects the strain range output. Fig. 45 shows the sensitivity ratios of the parameters in the form of a pie chart. When the chart is analyzed, it is seen that the strain range output is most sensitive to solder ball height (P5).

Figure 45. Pie chart that shows the sensitivity of the input parameters to strain range

After the statistical evaluation, confidence in the generated RS was ensured and the optimization part was started.

5.3 Optimization

After the RS was created, an optimization study was performed and the geometric configuration with the lowest strain range value was tried to be found. MOGA was selected as the optimization method. The values in Table 16 were selected as the interval sizes of the parameters in the optimization.

Fig. 46 shows the optimization result "Candidate Point 1". As a result of the calculation with RS, the strain range value was found to be 0.012316. The model was run again with the same parameter values and the actual value appeared as 0.01339. The difference between them is 8.7%. This difference was considered acceptable, and it was decided that the best configuration, considering the lowest strain range, was found.

 Optimization Study 							
Minimize P4	Goal, Minimize P4 (Default	Goal, Minimize P4 (Default importance)					
 Optimization Method 							
MOGA	The MOGA method (Multi- Genetic Algorithm-II) base finding the global optimum	The MOGA method (Multi-Objective Genetic Algorithm) is a variant of the popular NSGA-II (Non-dominated Sorted Genetic Algorithm-II) based on controlled elitism concepts. It supports multiple objectives and constraints and aims at finding the global optimum.					
Configuration	Generate 9000 samples in	itially, 1800 samples per iterat	tion and fin	d 3 candidates in a maximur	n of 20 iterations.		
Status	Converged after 37230 e	valuations.					
Candidate Points							
	Candidate Point 1	Candidate Point 1 (verified)	DP 149	Candidate Point 2	Candidate Point 3		
P5 - t_1 (um)		11,42	11,41	11,38			
P6 - t_2 (um)		11,02 10,97 10,72					
P7 - t_3 (um)		3,88 3,86 3,85					
P8 - radius (um)		150		149,9	149,5		
P10 - t_4 (um)		4,37		4,21	4,31		
P11 - t_5 (um)		11,68		11,89	11,19		
P12 - t_6 (um)		12,69 12,44 13,45					
P13 - t_7 (um)		23,01 22,81 21,78					
P14 - height (um)		160,5 159,1 164,4					
P4 - Strain Range (um um^-1)	★ 0,012316	\star 0,01339		★ 0,012338	★ 0,012354		

Figure 46 ANSYS optimization result showing the best geometric configuration with name "Candidate Point 1"

Table 19 shows the parameter values in the best configuration found.

Parameter Name	Definition	Value (µm)
P1	Bond pad 1 thickness	11.42
P2	UBM 1 thickness	11.02
P3	UBM 2 thickness	3.88
P4	Solder ball radius	150
P5	Solder ball height	4.37
P6	UBM 3 thickness	11.68
P7	UBM 4 thickness	12.69
P8	UBM 5 thickness	23.01
P9	Bond pad 2 thickness	160.5

Table 19. Parameter values of the best configuration

Fig. 47 shows the change of strain range values during iterations.

Figure 47. Change of strain range value during the optimization iterations In addition, the variation of each parameter value over the iterations is shown in Fig. 47a-i.

Figure 48. Change of each parameter value over the optimization iterations; (a) P1, (b) P2, (c) P3, (d) P4, (e) P5, (f) P6, (g) P7, (h) P8, (i) P9

Figure 48 (continued). Change of each parameter value over the optimization iterations; (a) P1, (b) P2, (c) P3, (d) P4, (e) P5, (f) P6, (g) P7, (h) P8, (i) P9

5.4 Lifetime Result of Solder Ball the best Geometric Configuration

According to the results obtained with parameters in Table 19, it was seen that the most critical point on the solder ball is the outermost diameter of the surface where the ball contacts UBM 3 (Gold) (Fig. 49).

Figure 49. Most critical point appears in the upper contact surface and at the outermost diameter

Fig. 50a shows the equivalent stress vs equivalent strain curve of critical point for 3 cycles in ANSYS WB environment. Fig. 50b shows the values in the third cycle plotted in isolation and the strain range value is shown.

This strain range value was then used for lifetime prediction. ECM was used as the lifetime prediction model (Eq. 2.4.1)

$$N_f = \frac{1}{2} \left(\frac{\Delta \gamma}{2\epsilon'_f} \right)^{\frac{1}{c}}$$
(2.4.1)

Equivalent strain range value was converted to equivalent shear strain range using Eq. 2.4.2.

$$\Delta \gamma = \sqrt{3} \Delta \varepsilon = \sqrt{3} * 1.339 * 10^{-2} = 2.3192 * 10^{-2}$$
(5.1)

(b)

Figure 50. Equivalent stress vs equivalent strain curves; (a) generated in ANSYS WB to show behavior of the 3 cycles, (b) third cycle isolated to show equivalent strain range

And with Eq. 2.4.3 value *c* can be found.

$$c = -0.442 - 6 \times 10^{-4} T_m + 1.74 \times 10^{-2} \ln(1+f)$$
 (2.4.3)

$$T_m = \frac{T_{max} + T_{min}}{2} \tag{4.6.2}$$

$$T_m = \frac{125 - 55}{2} = 35 \tag{4.6.3}$$

Where T_m is the average of the temperature profile extreme values and f is the frequency of the temperature profile, $f = 48 \left(\frac{cycles}{day}\right)$, thus c = -0.395.

And finally substituting all the generated and found $(2\epsilon'_f = 0.48 \ [12])$ values into Eq. 2.4.1.

$$N_f = \frac{1}{2} \left(\frac{\Delta \gamma}{2\epsilon_f'} \right)^{\frac{1}{c}} = \frac{1}{2} \left(\frac{2.3192 \times 10^{-2}}{0.48} \right)^{\frac{1}{-0.395}} \cong 1072 \ cycles \tag{4.6.4}$$

As a result, it was concluded that in the best geometrical configuration, the solder ball has a lifetime of 1072 cycles according to EP material model.

CHAPTER 6

CONCLUSION

After optimization studies using AV and EP material models for SAC305 material, the geometric configurations with the highest lifetime were found. Table 20 shows the values of the parameters in the best result found with both material models.

Table 20.	Comparison	of optimized	parameter	values	and	life	cycle	obtained	using
two differ	rent material	models							

Parameter	Definition	AV Model	EP Model	Percent
Name		Value (µm)	Value	Difference with
			(µm)	Respect to AV
				Model (%)
P1	Bond pad 1 thickness	12.08	11.42	-5.46
P2	UBM 1 thickness	12.62	11.02	-12.67
P3	UBM 2 thickness	4.3	3.88	-9.76
P4	Solder ball radius	149.4	150	0.4
P5	Solder ball height	4.26	4.37	2.58
P6	UBM 3 thickness	12.7	11.68	-8.03
P7	UBM 4 thickness	10.36	12.69	22.49
P8	UBM 5 thickness	17.94	23.01	28.26
P9	Bond pad 2 thickness	176.7	160.5	-9.16
Life cycle		643	1072	66.71

According to the simulation and optimization results in the same condition, it is concluded that the AV model leads to higher strain range values and therefore calculates lower life values. There is approximately 66.71% difference between the

lifetime results of the best geometric configurations found using both material models. According to these results, it is seen that the AV model is more conservative.

In addition, from Table 20 it can be concluded that values of parameters P4 and P5 are close to each other for both material models. And for the other parameters, it shows that values are not close to each other and there are percentage differences.

6.1 Lifetime Improvements of the Optimized Configurations

After the optimization results were obtained, it was desired to find out how much improvement in lifetime was achieved compared to the original structure geometry for both material models separately. Table 13 shows the values of the parameters in the original structure.

6.1.1 AV Material Model

In this section, the original structure given in Table 13 is simulated with the AV model and the life of the most critical solder ball in the original structure is calculated. Fig. 51 shows that the most critical region is again at the largest diameter of the surface in contact with UBM 3.

Figure 51. Most critical point appears in the upper contact surface and at the outermost diameter

The strain range value of the most critical solder ball in the original structure is 0.02317 (Fig. 52b). Using this value and Eq. 2.4.1, the lifetime of the original structure was found to be 267 cycles. Compared to the optimized structure (643 cycles), there is a 140% improvement in the lifetime of the critical solder ball.

(b)

Figure 52. Equivalent stress vs equivalent strain curves of original structure with AV model; (a) generated in ANSYS WB to show behavior of the 3 cycles, (b) third cycle isolated to show equivalent strain range

6.1.2 EP Material Model

In this section, the original structure given in Table 13 is simulated with the EP model and the life of the most critical solder ball in the original structure is calculated. Fig. 53 shows that the most critical region is again at the largest diameter of the surface in contact with UBM 3.

Figure 53. Most critical point appears in the upper contact surface and at the outermost diameter

The strain range value of the most critical solder ball in the original structure is 0.019632 (Fig. 54b). Using this value and Eq. 2.4.1, the lifetime of the original structure was found to be 407 cycles. Compared to the optimized structure (1072 cycles), there is a 163% improvement in the lifetime of the critical solder ball.

These results show that substantial improvement in lifetimes of solder balls could be achieved by optimizing the geometric parameters of the structure.

Figure 54. Equivalent stress vs equivalent strain curves of original structure with EP model; (a) generated in ANSYS WB to show behavior of the 3 cycles, (b) third cycle isolated to show equivalent strain range

6.1.3 Discussion

In this study, main desired motivation is to find the best geometric configuration whose have highest thermal fatigue life. Thus any other trade-off output parameter (weight, shape difference etc.) has not been taken into account in the optimizations.

As a result of the optimization study with the AV material model, a geometric configuration with a 140% increase in lifetime compared to the structure in the original dimensions was obtained. Here, the original structure was also analyzed with the AV model.

As a result of the optimization study with the EP material model, a geometric configuration with a 163% increase in lifetime compared to the structure in the original dimensions was obtained. Here, the original structure was also analyzed with the EP model.

As a result of the optimizations, lifetime results of critical solder ball were significantly increased for both material models.

6.2 Contribution to the Literature

In this study, the effect of thermomechanical loading due to temperature cycling on solder ball life in an electronic package with multiple UBM materials was investigated.

Results from this study shows that life values are similar to the values found in the literature [10] (Table 2).

9 different parameters were specified in the structure and an optimization study was carried out using these parameters. Optimization was performed separately using AV and EP material models for the solder balls.

The study carried out within the scope of this thesis is novel and contributes to the literature in terms of

- Unique and producible geometric dimensions of the working structure
- Optimization study with different material models
- And their comparison

6.3 Future Work

Response surface optimization method was used in the thesis using both material models (AV & EP). Instead of the OSF, NPR and MOGA methods used in this method, studies with different fit and optimization methods can be repeated using the same electronic package structure.

Within the scope of this thesis, physical samples of the resulting structures can be created for both material models and experimental cycle tests can be performed to see which material model gives results closer to simulations.

REFERENCES

[1] Pengli Z, Gang L, C P Wong, Encyclopedia of Packaging Materials, Processes, and Mechanics, World Scientific Publishing Company, Volume 1, Chapter 1, https://doi.org/10.1142/11303-vol1

 [2] Joshua D, Mallik S, Harmanto D, Solder Joint Failures under Thermo-Mechanical Loading Conditions -A Review, Volume 7, Doi: 10.1080/2374068X.2020.1751514, Advances in Materials and Processing Technologies

[3] Puttlitz, K.J. and P. Totta, Area Array Interconnection Handbook. 2001: Kluwer Academic Publishers.

[4] Jintao He, Yun Ling, Dong Lei, Mechanical properties of Sn–Pb based solder joints and fatigue life prediction of PBGA package structure, Ceramics International, Volume 49, Issue 16, 2023, Pages 27445-27456, ISSN 0272-8842, https://doi.org/10.1016/j.ceramint.2023.06.017.

[5] M.P Rodriguez, N.Y.A Shammas, Finite element simulation of thermal fatigue in multilayer structures: thermal and mechanical approach, Microelectronics Reliability, Volume 41, Issue 4, 2001, Pages 517-523, ISSN 0026-2714, https://doi.org/10.1016/S0026-2714(00)00256-0.

[6] Qiang Guo, Mei Zhao, HongFang Wang, SMT solder joint's semi-experimental fatigue model, Mechanics Research Communications, Volume 32, Issue 3, 2005, Pages 351-358, ISSN 0093-6413, https://doi.org/10.1016/j.mechrescom.2004.03.011.

[7] H. Xiao, X.Y. Li, Y. Hu, F. Guo, Y.W. Shi, Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling, Journal of Alloys and Compounds, Volume 578, 2013, Pages 110-117, ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2013.05.026.

[8] C. Huang, D. Yang, Daoguo, B. Wu, L. Liang, Y Yang, 2012/08/01, 1395, 1398, 978-1-4673-1682-8, Failure mode of SAC305 lead-free solder joint under thermal stress, doi: 10.1109/ICEPT-HDP.2012.6474866.

[9] F. X. Che and J. H. L. Pang, Fatigue Reliability Analysis of Sn–Ag–Cu Solder Joints Subject to Thermal Cycling, in IEEE Transactions on Device and Materials Reliability, vol. 13, no. 1, pp. 36-49, March 2013, doi: 10.1109/TDMR.2012.2195007.

[10] Hironori Tohmyoh, Shoho Ishikawa, Satoshi Watanabe, Motohisa Kuroha, Yoshikatsu Nakano, Estimation and visualization of the fatigue life of Pb-free SAC solder bump joints under thermal cycling, Microelectronics Reliability, Volume 53, Issue 2, 2013, Pages 314-320, ISSN 0026-2714, https://doi.org/10.1016/j.microrel.2012.08.012.

[11] G. Dong, X. Zhang, K. Ngo, G. Lu, 2010/04/13, SP-43, EP-48, Thermal fatigue behaviour of Al 2 O 3 -DBC substrates under high temperature cyclic loading, Volume 22, doi: 10.1108/09540911011036280, Journal Soldering & Surface Mount Technology

[12] Joshua A. Depiver, Sabuj Mallik, Emeka H. Amalu, Thermal fatigue life of ball grid array (BGA) solder joints made from different alloy compositions, Engineering Failure Analysis, Volume 125, 2021, 105447, ISSN 1350-6307, https://doi.org/10.1016/j.engfailanal.2021.105447.

[13] Jintao He, Yun Ling, Dong Lei, Mechanical properties of Sn–Pb based solder joints and fatigue life prediction of PBGA package structure, Ceramics International, Volume 49, Issue 16, 2023, Pages 27445-27456, ISSN 0272-8842, https://doi.org/10.1016/j.ceramint.2023.06.017.

[14] Rui W. Chang, F. Patrick McCluskey, Reliability assessment of indium solder for low temperature electronic packaging, Cryogenics, Volume 49, Issue 11, 2009, Pages 630-634, ISSN 0011-2275, https://doi.org/10.1016/j.cryogenics.2009.02.003.
[15] Ma, H., Suhling, J.C. A review of mechanical properties of lead-free solders for electronic packaging. J Mater Sci 44, 1141–1158 (2009). https://doi.org/10.1007/s10853-008-3125-9

[16] T. Hayashi, M. Takabe, Y. Ebihara, J. Shimura, Comparison between anand model and cassical decoupled creep and plasticity model, Tokyo Institute of Technology Research Report No. 46(1), 2014, https://www.jstage.jst.go.jp/article/tncttosho/46/1/46_14/_pdf/-char/ja

[17] J. -B. Libot, F. Dulondel, P. Milesi, J. Alexis, L. Arnaud and O. Dalverny, Experimental Strain Energy Density Dissipated in SAC305 Solder Joints During Different Thermal Cycling Conditions Using Strain Gages Measurement, 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2018, pp. 748-755, doi: 10.1109/ECTC.2018.00116.

[18] Wang, G. Z., Cheng, Z. N., Becker, K., and Wilde, J. (October 20, 1998). "Applying Anand Model to Represent the Viscoplastic Deformation Behavior of Solder Alloys ." ASME. J. Electron. Packag. September 2001; 123(3): 247–253. https://doi.org/10.1115/1.1371781

[19] Zhi-Hao Zhang, Xi-Shu Wang, Huai-Hui Ren, Su Jia, Hui-Hui Yang, Simulation study on thermo-fatigue failure behavior of solder joints in package-on-package structure, Microelectronics Reliability, Volume 75, 2017, Pages 127-134, ISSN 0026-2714, https://doi.org/10.1016/j.microrel.2017.06.033.

[20] X. Yan and G. Li, Study of thermal fatigue lifetime of fan-in package on package (FiPoP) by finite element analysis, 2009 International Conference on Electronic Packaging Technology & High Density Packaging, Beijing, China, 2009, pp. 1176-1180, doi: 10.1109/ICEPT.2009.5270614.

[21] Huang Chunyue, Thermal fatigue life analysis and forecast of PBGA solder joints on the flexible PCB based on finite element analysis, 2008 International Conference on Electronic Packaging Technology & High Density Packaging, Shanghai, China, 2008, pp. 1-4, doi: 10.1109/ICEPT.2008.4607162.

[22] Chen Ying, Hou Zebing and Kang Rui, Lifetime prediction and impact factors analysis of ball grid array solder joint based on FEA, 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging, Xi'an, China, 2010, pp. 1142-1146, doi: 10.1109/ICEPT.2010.5582746.

[23] Xin Xu, Yang Liu, Yahui Su, Cong Sun, Yuxiong Xue, Lina Ju, Shuye Zhang, Fatigue behavior of 3D stacked packaging structures under extreme thermal cycling condition, Memories - Materials, Devices, Circuits and Systems, Volume 4, 2023, 100032, ISSN 2773-0646, https://doi.org/10.1016/j.memori.2023.100032.

[24] Kenny C. Otiaba, R.S. Bhatti, N.N. Ekere, S. Mallik, M. Ekpu, Finite element analysis of the effect of silver content for Sn–Ag–Cu alloy compositions on thermal cycling reliability of solder die attach, Engineering Failure Analysis, Volume 28, 2013, Pages 192-207, ISSN 1350-6307, https://doi.org/10.1016/j.engfailanal.2012.10.008.

[25] Mathias Ekpu, Raj Bhatti, Michael I. Okereke, Sabuj Mallik, Kenny Otiaba, Fatigue life of lead-free solder thermal interface materials at varying bond line thickness in microelectronics, Microelectronics Reliability, Volume 54, Issue 1, 2014, Pages 239-244, ISSN 0026-2714, https://doi.org/10.1016/j.microrel.2013.08.006.

[26] Sinda Ghenam, Abdelkhalak El Hami, Wajih Gafsi, Ali Akrout, Mohamed Haddar, Optimal performance and cost-effective design of BGA solder joints using a deterministic design optimization (DDO) under real operating conditions, Microelectronics Reliability, Volume 146, 2023, 115019, ISSN 0026-2714, https://doi.org/10.1016/j.microrel.2023.115019.

[27] C. Chen, J. C. Suhling and P. Lall, Improved Submodeling Finite Element Simulation Strategies for BGA Packages Subjected to Thermal Cycling, 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, USA, 2018, pp. 1146-1154, doi: 10.1109/ITHERM.2018.8419533. [28] Domen Šeruga, Marko Nagode, A new approach to finite element modelling of cyclic thermomechanical stress-strain responses, International Journal of Mechanical Sciences, Volume 164, 2019, 105139, ISSN 0020-7403, https://doi.org/10.1016/j.ijmecsci.2019.105139.

[29] Junzhou Huo, Debin Sun, Hanyang Wu, Weizheng Wang, lin Xue, Multi-axis low-cycle creep/fatigue life prediction of high-pressure turbine blades based on a new critical plane damage parameter, Engineering Failure Analysis, Volume 106, 2019, 104159, ISSN 1350-6307, https://doi.org/10.1016/j.engfailanal.2019.104159.

[30] M. Rassaian, W. Chang and Jung-Chan Lee, Multi-domain analysis of PBGA solder joints for structural design optimization, 1998 Proceedings. 48th Electronic Components and Technology Conference (Cat. No.98CH36206), Seattle, WA, USA, 1998, pp. 1332-1338, doi: 10.1109/ECTC.1998.678917.

[31] S. -C. Yang et al., Optimization of solder height and shape to improve the thermo-mechanical reliability of wafer-level chip scale packages, 2013 IEEE 63rd Electronic Components and Technology Conference, Las Vegas, NV, USA, 2013, pp. 1210-1218, doi: 10.1109/ECTC.2013.6575729.

[32] Lallit Anand, Constitutive equations for hot-working of metals, International Journal of Plasticity Volume 1, Issue 3, 1985, Pages 213-231, ISSN 0749-6419, https://doi.org/10.1016/0749-6419(85)90004-X.

[33] Mechanical Properties of Materials

https://mechanicalc.com/reference/mechanical-properties-of-materials

[34] Su, S., Akkara, F. J., Thaper, R., Alkhazali, A., Hamasha, M., and Hamasha, S. (May 17, 2019). "A State-of-the-Art Review of Fatigue Life Prediction Models for Solder Joint." ASME. J. Electron. Packag. December 2019; 141(4): 040802. https://doi.org/10.1115/1.4043405.

[35] W. Engelmaier, "Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling," in IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 6, no. 3, pp. 232-237, September 1983, doi: 10.1109/TCHMT.1983.1136183.

[36] A. A. Saad, Cyclic plasticity and creep of power plant materials, 2012/03/15

[37] A. Deshpande, H. Khan, F. Mirza and D. Agonafer, Global-local finite element optimization study to minimize BGA damage under thermal cycling, Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 2014, pp. 483-487, doi: 10.1109/ITHERM.2014.6892321.

[38] P. Altieri-Weimar et al., Reliability model of LED package regarding the fatigue behavior of gold wires, 2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Montpellier, France, 2016, pp. 1-6, doi: 10.1109/EuroSimE.2016.7463326.

[39] Ross, R. B., and Sullivan, A. M. (October 1, 1981). Metallic Materials Specification Handbook, Third Edition. ASME. J. Eng. Mater. Technol. October 1981; 103(4): 347. https://doi.org/10.1115/1.3225027

[40] X. Gao, R. Chen, C. Li and S. Liu, "Dimension optimization of through silicon via(TSV) through simulation and design of experiment (DOE)," 2012 13th International Conference on Electronic Packaging Technology & High Density Packaging, Guilin, China, 2012, pp. 1185-1189, doi: 10.1109/ICEPT-HDP.2012.6474819.

[41] MIL-STD-883 Test Method Standard Microcircuits, Department of Defense, 1996.

[42] Introduction to ANSYS DesignXplorer, Module 03: Design of Experiments.

[43] Introduction to ANSYS DesignXplorer, Module 04: Response Surface.

[44] Introduction to ANSYS DesignXplorer, Module 05: Optimization.

[45] F Qin, T. An, N. Chen, Strain Rate Effects and Rate-Dependent Constitutive Models of Lead-Based and Lead-Free Solders, 2010/01/01, SP 1008, Volume 77, Journal of Applied Mechanics, doi: 10.1115/1.316860.

APPENDICES

Project Schematic				
▼ A	▼ B		▼ C	
1 🥔 Geometry	1 🚾 Static Structural		1 🥃 Static Structural	
2 Decometry	2 🦪 Engineering Datz	× -	🛛 🖉 🦪 Engineering Data	$\overline{}$
Geometry 2 - 0.5mm	- 3 D Geometry	× .	3 Geometry	
	4 🍘 Model	× .	4 🎯 Model	
	5 🎡 Setup	~	5 🎡 Setup	~
	6 🚮 Solution	1	6 🕼 Solution	1
	7 😥 Results	× .	7 😥 Results	
	Static Structural		> 8 D Parameters	-
	Static Structural		Static Structural	_
			Static Structural	
			·	
	(
• D	/			
1 Geometry				
2 Commention				
3 up Parameters				
Geometry 2 - Submodel				
Parameter Set				
▼ E				
1 🥹 Response Surface Optimization				
2 🛄 Design of Experiments 🛛 🦉 🛓				
3 🗾 Response Surface 🛛 💱 🧧				
4 🥹 Optimization 🕹 🖌				
Personnee Surface Optimization				

A. ANSYS Workbench Project Schematic

Na	D1	D2	D3	P4	P5	P6	D 7	DS	DQ	Strain
me	• •	12	15	14	15	10	.,	10	15	Range
	12.56	10.01	4.435	135.1	139.4	3.496	14.40	9.795	10.05	0.0239
1	803	701	374	701	558	599	476	918	102	34686
	12.12	12.60	3.714	124.5	150.8	4.857	10.01	14.76		0.0243
2	585	204	286	578	844	143	701	19	17.5	06138
	10.05	12.73	3.945	122.3	144.8	3.020	13.92	12.72	19.64	0.0251
3	102	81	578	81	98	408	857	109	286	30488
	11.78	10.25	4.612	118.5	134.0	4.544	13.21	8.503	24.94	0.0283
4	571	51	245	714	136	218	429	401	898	36591
	12.19	11.27	4.204	128.3	179.7	3.891	10.05	7.006	21.78	0.0229
5	388	551	082	673	279	156	102	803	571	06264
	14.71		3.836	144.4	155.2	3.673	14.74	12.92	13.41	0.0201
6	088	12.5	735	218	381	469	49	517	837	8047
	10.15	11.78	4.884	123.7	124.2	3.442	11.10	7.551	20.05	0.0271
7	306	571	354	415	177	177	544	02	102	75163
	13.35	11.03	3.020	121.2	171.0	4.489	12.12	6.870	15.86	0.0214
8	034	741	408	925	204	796	585	748	735	35717
	10.59	10.52	4.353	115.3	132.3	4.816	11.27	7.959	13.82	0.0280
9	524	721	741	061	81	327	551	184	653	72337
	11.92	12.39		114.2	153.6	4.952	11.98	5.442	22.70	0.0267
10	177	796	4	177	054	381	98	177	408	97383
	10.79	10.83	3.768	111.4	137.2	3.605	11.71	13.80	22.09	0.0297
11	932	333	707	966	789	442	769	952	184	85829
	14.81	13.45	4.176	121.0	108.4	4.040	10.66	6.190	19.74	0.0284
12	293	238	871	204	354	816	327	476	49	62381
	10.96	10.73	3.591	110.4	134.5	4.258	14.43	10.13	13.01	0.0278
13	939	129	837	082	578	503	878	605	02	28502
	13.18	11.88	4.639	126.1	165.5	3.265	11.41	14.48	23.52	0.0223
14	027	776	456	905	782	306	156	98	041	0716
	13.72	10.66	4.925	120.7	160.6	3.537	11.95	8.299	22.90	0.0244
15	449	327	17	483	803	415	578	32	816	28276
	13.04	13.72	4.340	112.0	163.4	3.646	13.52	5.306	19.84	0.0239
16	422	449	136	408	014	259	041	122	694	02785
	12.29	10.05	4.217	118.0	119.3	3.659	14.54	6.802	18.52	0.0277
17	592	102	687	272	197	864	082	721	041	52712
	10.22	11.81	3.537	116.1	166.1	4.666	13.62	10.95	21.47	0.0225
18	109	973	415	224	224	667	245	238	959	91236
	14.94	10.32	4.721	130.2	156.3	4.326	14.13	9.387	17.70	0.0255
19	898	313	088	721	265	531	265	755	408	30644
	10.69	13.55	4.870	132.1	102.4	4.653	13.65		16.37	0.0253
20	728	442	748	769	49	061	646	10	755	18276

B. DOE Design Points with AV Material Model

	14.47	11.10	4.857	132.7	147.6	3.102	10.83	10.74	14.74	0.0222
21	279	544	143	211	19	041	333	83	49	58289
	13.65	13.28	3.510	135.9	130.2	4.761	11.37	14.21	24.13	0.0268
22	646	231	204	864	041	905	755	769	265	74155
	10.35	13.99	3.700	115.8	106.8	3.578	13.72	8.775	15.45	0.0318
23	714	66	68	503	027	231	449	51	918	00501
	13.52	12.32	3.115	115.0	141.6	3.238	13.48	7.346	23.11	0.0259
24	041	993	646	34	327	095	639	939	224	47188
	11.54	13.96	3.918	139.2	153.0	3.360	14.91	13.87	14.13	0.0226
25	762	259	367	517	612	544	497	755	265	5119
	11.58	11.37	4.272	140.3	179.1	3.034	11.85	11.97	14.43	0.0223
26	163	755	109	401	837	014	374	279	878	33371
	13.01	14.67	3.891	116.6	171.5	3.823	10.49	12.38	20.45	0.0213
27	02	687	156	667	646	129	32	095	918	688
	14.84	12.26	4.598	124.2	114.9	4.843	13.24	6.530	18.72	0.0278
28	694	19	639	857	66	537	83	612	449	14731
	10.56	11.92	4.299	144.1	162.3	4.639	10.52	12.24	21.37	0.0194
29	122	177	32	497	129	456	721	49	755	65442
	14.06	12.56	4.027	146.5	173.1	3.850	10.73	13.94	19.03	0.0191
30	463	803	211	986	973	34	129	558	061	619
	13.11	11.44	3.156	133.8	161.7	3.714	10.28	11.56	11.17	0.0237
31	224	558	463	095	687	286	912	463	347	30022
	13.86	14.77	4.530	149.3	141.0	4.217	12.46	11.29	22.19	0.0223
32	054	891	612	197	884	687	599	252	388	749
	11.75	10.28	4.911	141.7	154.6	3.387	13.45	6.666	19.94	0.0187
33	17	912	565	007	939	755	238	667	898	0519
	10.83	11.41	3.401	130.8	166.6	3.836	13.55	13.40	10.56	0.0237
34	333	156	361	163	667	735	442	136	122	28832
	14.20	10.39	4.040	129.1	142.1	4.693	10.42	6.734	13.11	0.0245
35	068	116	816	837	769	8/8	51/	694	224	07956
	14.26	13.04	3.346	119.6	152.5	3.428	14.16	14.08	20.86	0.021/
36	8/1	422	939	599	1/	5/1	667	163	/35	14581
	14.67	11.24	3.795	146.3	100.2	4.1/6	13.31	8.095	16.07	0.0286
37	687	15	918	265	/21	8/1	633	238	143	32974
20	13.55	13.82	4.653	148.5	155.7	3.768	12.73	5.034	18.41	0.0211
38	442	653	061	034	823	/0/	81	014	837	/5/65
20	11.64	14.57	3.292	120.4	119.8	3.687	11.92	13.06	11.37	0.0272
39	966	483	517	762	639	075	1//	122	/55	10031
10	14.16	13.58	3.074	116.9	110.6	3.619	13.58	9.659	13.31	0.0296
40	667	844	83	388	122	048	844	864	633	28/86
11	10.66	267	3.08/	125.0	108.9	4.408	10.79	13.12	12.29	0.0306
41	327	12.20	0/5	403	190	4 1 0 0	93Z	925	24.22	3203
12	13.21	12.30	4.000	132.9	007	4.108	13.99	14.42	24.33	0.0295
42	429	395	4 400	932		044 4 5 0 2	11 01	14.62	11.00	0.0255
12	14.74	12.80	4.408	119.1	146.5	4.503		14.62	11.98	0.0255
43	49	012	703	120	300	401	9/3	585	98	359/9

	13.14	12.70	4.585	140.6	125.3	3.877	10.69	6.462	24.84	0.0224
44	626	408	034	122	061	551	728	585	694	03943
	14.03	13.38	4.571	112.5	121.4	4.163	14.98	9.115	20.25	0.0286
45	061	435	429	85	966	265	299	646	51	31211
	10.32	13.86	3.183	133.5	138.3	3.551	10.32	11.36	20.15	0.0250
46	313	054	673	374	673	02	313	054	306	87
	12.02	14.98	3.306	144.6	172.1	4.394	12.05	8.231	20.35	0.0206
47	381	299	122	939	088	558	782	293	714	21352
	13.41	10.86	3.578	124.0	122.0	4.870	13.38	14.89	17.90	0.0278
48	837	735	231	136	408	748	435	796	816	58898
	14.23	13.14	3.850	125.3	145.9	4.829	14.77	10.20	11.27	0.0267
49	469	626	34	741	864	932	891	408	551	78456
	12.60	12.12	4.095	118.2	116.5	3.564	14.64	14.14	11.78	0.0289
50	204	585	238	993	986	626	286	966	571	40095
	14.60	10.15	3.741	139.7	150.3	3.374	13.41	11.63		0.0211
51	884	306	497	959	401	15	837	265	22.5	7562
	11.10	11.51	3.551	124.8	118.7	4.136	14.84	11.90	24.64	0.0253
52	544	361	02	299	755	054	694	476	286	88606
	14.37	10.90	3.959	133.2	175.9	4.557	12.26	11.70	23.82	0.0233
53	075	136	184	653	184	823	19	068	653	86722
	13.31	10.49	3.564	132.4	129.6	4.802	14.88	8.843	20.56	0.0271
54	633	32	626	49	599	721	095	537	122	17224
	11.41	14.20	3.414	111.2	123.6	4.598	12.87	13.53	18.11	0.0309
55	156	068	966	245	735	639	415	741	224	32833
	13.79	14.26	3.374	130.5	169.3	3.156	11.88	10.27	23.01	0.0213
56	252	871	15	442	878	463	776	211	02	06335
	13.38	10.35	4.054	149.5	107.3	3.414	11.44	10.68	20.76	0.0304
57	435	714	422	918	469	966	558	027	531	61282
	12.80	10.11	4.285	148.7	151.4	4.612	13.04	13.19	15.66	0.0188
58	612	905	714	755	286	245	422	728	327	60779
	13.48	12.84	3.333	116.3	104.6	4.530	11.64	10.47	23.62	0.0331
59	639	014	333	946	259	612	966	619	245	48913
~~	12.22	11.75	3.142	142.2	177.5	3.931	12.94	5.986	21.07	0.0198
60	/89	1/	857	449	51	9/3	218	395	143	77091
C 1	10.49	13.69	4.503	147.9	113.3	3.755	11.58	12.51	15.76	0.0242
61	32	048	401	592	333	102	163	/01	531	42086
6.0	11.81	11.54	4.993	128.6	165.0	4.312	14.60	12.78	20.66	0.0232
62	973	/62	197	395	34	925	884	912	327	24826
62	12.70	11.61	4.979	114.4	167.2	4.775	11.68	11.49	16.88	0.0228
63	408	565	592	898	109	51	36/	66	1/6	24493
C A	11.88	11.00	3.170	128.9	116.0	3.863	10.62	5.578	15.56	0.0268
64	1/6	34	068	110	544	946	925	231	11.07	30300
CF	14.64	12.94	4.748	138./	129.1	3.945	11.03	7.142	11.0/	0.0223
65	280	218	299	125 7	1120	5/8	/41	85/	143	351/5
66	13.24	14.16	3.523	135./	147.0	3.129	14.57	6.326	10.17	0.0222
66	გვ	667	ΔT	143	748	252	483	531	347	07303

67 143 109 66 98 082 497 122 32 633 38361 12.87 14.09 3.319 140.8 110.0 3.727 14.20 6.938 2.39 0.0291 68 415 864 728 844 68 891 068 776 796 5917 12.39 11.34 3.80 129.7 176.4 4.43 14.98 5.66 15.05 0.0219 70 354 524 279 626 374 898 250 102 95394 10.01 11.85 524 137.8 12.74 3.115 10.86 8.163 11.88 0.0228 71 701 374 558 537 140 355 12.53 14.64 0.0274 71 524 789 891 766 782 4013 8.264 3928 11.03 11.20 3.129 13.40 12.59
12.87 14.09 3.319 140.8 110.0 3.727 14.20 6.388 22.39 0.0291 68 415 864 728 844 68 891 068 776 796 5917 69 796 354 524 279 626 374 898 259 10.2 95394 70 10.39 12.29 4.231 137.8 127.4 3.115 10.86 8.163 11.88 0.0228 70 116 592 293 912 83 646 735 265 766 654 701 374 558 537 140 355 12.5 14.64 0.027 71 701 374 589 591 776 782 401 388 266 4398 11.03 11.20 3.129 134.0 128.5 4.62 11.24 9.047 24.43 0.0274 741 748
6841586472884468891068776796591712.3911.343.809129.7176.44.43514.945.64615.050.0212697963545242796263748982591029539410.3912.294.231137.8127.43.11510.868.16311.880.0228701165922939128364673525576665470113.74558537140354871884816773670137455853714035487188481677367170137455853714038481643987215524789891776782401388286439811.0311.203.972142.711.883.45512.514.6914.440.02767455559478581671458515.061987818497456559926543589108212.5068306150357565318475597323861914.3714026836757592655995580956059058372043129757597890542132268 </td
12.3911.343.809129.7176.44.43514.945.64615.050.0212697963545242796263748982591029539410.3912.294.231137.8127.43.11510.868.16311.880.02287011659229391283646735265776654717011745585371403548718848167736717013745585371403548718848167736717013745585371403548718848167736721552478989177678240138828643987374174825281671458515.061987818497456559926543589182212.5668306150357456559926543589112.411.0712.8518.010.02787565318475597323861914.37140268367579805421320630590583720431297578905421493431.7011.176.2812.900.02157578905412.4
697963545242796263748982591029539410.3912.294.231137.8127.43.11510.868.16311.880.0228701165922939128364673526577665470111.854.394134.3-4.88414.2612.1012.900.024271701374558537140354871884816773671155247898917767824013882664398721552478989177678240138826643987374174825281671458515619878184967374174825281671458515619878184967456559926543589108212.5068306150357565318475597323861914.37140268367565318475597323861914.312.600.02257647627209555809560590583720431299767597890542113216.83448455173147513.9414.2916.9
10.39 12.29 4.231 137.8 127.4 3.115 10.86 8.163 11.88 0.0228 70 116 592 293 912 83 646 735 265 776 654 70 11.65 4.394 134.3 4.884 14.26 12.10 12.90 0.0242 71 701 374 558 537 140 354 871 848 816 7736 11.41 10.59 3.792 142.7 11.38 3.455 12.53 14.69 14.43 0.0274 72 15 524 789 891 776 782 401 388 286 4398 11.03 11.20 3.14.0 12.85 4.462 11.24 9.043 0.0274 741 748 252 816 714 585 157 10.15 0.0289 74 565 599 265 435 811 10.71
701165922939128364673526577665410.0111.854.394134.34.88414.2612.1012.900.024271701374558537140354871884816773611.2410.593.972142.7113.83.45512.5314.6914.640.02767215524789891776782401388286439811.0311.203.129134.0128.54.46211.249.04724.430.02767374174825281671458515619878184967456559926543589108212.5068306150357565318475597323861914.37140268367565318475597323861914.371402683676476272095558095605905837204312997565318.4755974232846347503184884757647627209555809560590583720431299772597890542313284210.088.36718.310.031877259789 <t< td=""></t<>
10.0111.854.394134.34.88414.2612.1012.900.024271701374558537140354871884816773611.2410.593.972142.7113.83.45512.5314.6914.640.02767215524789891776782401388286439811.0311.203.129134.0128.54.46211.249.04724.430.027473741748252816714585156198781849611.6112.464.163118.8112.74.2045.17010.150.02897456559926543589108212.506830615035756531847559732386191437140268367647627209555809560590583720431297725978905423132068347503184884757725978905423132068347503184884757881683442663749350334763357177966493278032311849348389808521796649327803
71701374558537140354871884816773611.2410.593.972142.7113.83.45512.5314.6914.640.02767215524789891776782401388286439811.0311.203.129134.0128.54.46211.249.04724.430.027473741748252816714585156198781849611.6112.464.163118.8112.74.2045.17010.150.02897456559926543589108212.50683061503513.8212.093.387123.110.953.04711.0712.8518.010.02787565318475597323861914.371402683676476272095558095605905837204312997113.9612.224.136127.8169.93.17011.176.25812.090.0211772597890542313206834750318488475788168344266374993503347633571779664932780323118493483808521796649
11.2410.593.972142.7113.83.45512.5314.6914.640.02767215524789891776782401388286439811.0311.203.129134.0128.54.46211.249.04724.430.02747374174825281671458515619878184967456559926543589108212.5068306150357456559926543589108212.506830615035756531847559732386191437140268367565318475597323861914371402683676476272095558095605905837204312997725978905423132068347503184884757813.9612.224.13617.816.93.17011.176.25812.090.02167725978905423132068347503184884757881683442663749335333476335717796649327830231184934886852181613.924.54
72 15 524 789 891 776 782 401 388 286 4398 11.03 11.20 3.129 134.0 128.5 4.462 11.24 9.047 24.43 0.0274 73 741 748 252 816 714 585 15 619 878 18496 11.61 12.46 4.163 118.8 112.7 4.204 5.170 10.15 0.0289 74 565 599 265 435 891 082 12.5 068 306 15035 13.82 12.09 3.387 123.1 109.5 3.047 11.07 12.85 18.01 0.0278 75 653 184 755 973 238 619 14.3 714 02 6836 14.40 14.30 3.238 1294 143.8 4.013 10.11 9.51 12.60 0.221 7 259 789
11.03 11.20 3.129 134.0 128.5 4.462 11.24 9.047 24.43 0.0274 73 741 748 252 816 714 585 15 619 878 18496 11.61 12.46 4.163 118.8 112.7 4.204 5.170 10.15 0.0289 74 565 599 265 435 891 082 12.5 068 306 15035 13.82 12.09 3.387 123.1 109.5 3.047 11.07 12.85 18.01 0.0278 653 184 755 973 238 619 143 714 02 6836 14.40 14.30 3.238 12.94 143.8 4.013 10.11 9.591 12.60 0.0225 76 476 272 095 558 095 605 905 837 204 31299 13.99 13.24 3.605
73 741 748 252 816 714 585 15 619 878 18496 11.61 12.46 4.163 118.8 112.7 4.204 5.170 10.15 0.0289 74 565 599 265 435 891 082 12.5 068 306 15035 75 653 184 755 973 238 619 143 714 02 6836 76 476 272 095 558 095 605 905 837 204 31299 76 476 272 095 558 095 605 905 837 204 31299 77 259 789 054 231 32 068 347 503 184 8475 78 816 83 442 66 374 993 503 347 633 5717 13.99 14.74
11.61 12.46 4.163 118.8 112.7 4.204 5.170 10.15 0.0289 74 565 599 265 435 891 082 12.5 068 306 15035 13.82 12.09 3.387 123.1 109.5 3.047 11.07 12.85 18.01 0.0278 75 653 184 755 973 238 619 143 714 02 6836 14.40 14.30 3.238 129.4 143.8 4.013 10.11 9.591 12.60 0.0225 76 476 272 095 558 095 605 905 837 204 31299 77 259 789 054 231 32 068 347 503 184 88475 78 816 83 442 66 374 993 503 347 633 5717 13.99 14.74
74 565 599 265 435 891 082 12.5 068 306 15035 13.82 12.09 3.387 123.1 109.5 3.047 11.07 12.85 18.01 0.0278 75 653 184 755 973 238 619 143 714 02 6836 14.40 14.30 3.238 129.4 143.8 4.013 10.11 9.591 12.60 0.0225 76 476 272 095 558 095 605 905 837 204 31299 77 259 789 054 231 32 068 347 503 184 88475 78 816 83 442 66 374 993 503 347 633 5717 13.99 14.74 4.816 110.6 137.8 3.959 12.32 8.707 14.94 0.0272 79 66<
13.82 12.09 3.387 123.1 109.5 3.047 11.07 12.85 18.01 0.0278 75 653 184 755 973 238 619 143 714 02 6836 14.40 14.30 3.238 129.4 143.8 4.013 10.11 9.591 12.60 0.0225 76 476 272 095 558 095 605 905 837 204 31299 13.96 12.22 4.136 127.8 169.9 3.170 11.17 6.258 12.09 0.0201 77 259 789 054 231 32 068 347 503 184 88475 12.90 13.24 3.605 144.9 103.5 3.482 10.08 8.367 18.31 0.0318 78 816 83 442 66 374 993 503 347 633 5717 13.99 14
7565318475597323861914371402683614.4014.303.238129.4143.84.01310.119.59112.600.0225764762720955580956059058372043129913.9612.224.136127.8169.93.17011.176.25812.090.020177259789054231320683475031848847512.9013.243.605144.9103.53.48210.088.36718.310.0318788168344266374993503347633571713.9914.744.816110.6137.83.95912.328.70714.940.02727966493278032311849934838980852110.8613.924.544113.9160.14.70713.7512.1714.540.02418073585721845636148385687082941811.8513.113.061138.4135.64.35314.717.68710.960.0245813742242243544637410880759390195110.2513.214.380149.8149.73.34613.799.18316.580.0195
14.40 14.30 3.238 129.4 143.8 4.013 10.11 9.591 12.60 0.0225 76 476 272 095 558 095 605 905 837 204 31299 13.96 12.22 4.136 127.8 169.9 3.170 11.17 6.258 12.09 0.0201 77 259 789 054 231 32 068 347 503 184 88475 12.90 13.24 3.605 144.9 103.5 3.482 10.08 8.367 18.31 0.0318 78 816 83 442 66 374 993 503 347 633 5717 13.99 14.74 4.816 110.6 137.8 3.959 12.32 8.707 14.94 0.0272 79 66 49 327 803 231 184 993 483 898 08521 10.86 13.92 4.544 113.9 160.1 4.707 13.75 12.17 14.54
764762720955580956059058372043129913.9612.224.136127.8169.93.17011.176.25812.090.020177259789054231320683475031848847512.9013.243.605144.9103.53.48210.088.36718.310.0318788168344266374993503347633571713.9914.744.816110.6137.83.95912.328.70714.940.02727966493278032311849934838980852110.8613.924.544113.9160.14.70713.7512.1714.540.02418073585721845636148385687082941811.8513.113.061138.4135.64.35314.717.68710.960.0245813742242243544637410880759390195182514299526399599392526731634044714.5414.033.755131.3174.24.73411.617.21014.230.022383082061102605857694565884469034584 </td
13.96 12.22 4.136 127.8 169.9 3.170 11.17 6.258 12.09 0.0201 77 259 789 054 231 32 068 347 503 184 88475 12.90 13.24 3.605 144.9 103.5 3.482 10.08 8.367 18.31 0.0318 78 816 83 442 66 374 993 503 347 633 5717 13.99 14.74 4.816 110.6 137.8 3.959 12.32 8.707 14.94 0.0272 79 66 49 327 803 231 184 993 483 898 08521 10.86 13.92 4.544 113.9 160.1 4.707 13.75 12.17 14.54 0.0241 80 735 857 218 456 361 483 85 687 082 9418 11.85 13.11 3.061 138.4 135.6 4.353 14.71 7.687 10.96 <t< td=""></t<>
77259789054231320683475031848847512.9013.243.605144.9103.53.48210.088.36718.310.0318788168344266374993503347633571713.9914.744.816110.6137.83.95912.328.70714.940.02727966493278032311849934838980852110.8613.924.544113.9160.14.70713.7512.1714.540.02418073585721845636148385687082941811.8513.113.061138.4135.64.35314.717.68710.960.0245813742242243544637410880759390195110.2513.214.380149.8149.73.34613.799.18316.580.019582514299526399599392526731634044783082061102605857694565884469034584986088449184932813956334914475
12.9013.243.605144.9103.53.48210.088.36718.310.0318788168344266374993503347633571713.9914.744.816110.6137.83.95912.328.70714.940.02727966493278032311849934838980852110.8613.924.544113.9160.14.70713.7512.1714.540.02418073585721845636148385687082941811.8513.113.061138.4135.64.35314.717.68710.960.0245813742242243544637410880759390195182514299526399599392526731634044783082061102605857694565884469034584986088449184932813956334914475
788168344266374993503347633571713.9914.744.816110.6137.83.95912.328.70714.940.02727966493278032311849934838980852110.8613.924.544113.9160.14.70713.7512.1714.540.02418073585721845636148385687082941811.8513.113.061138.4135.64.35314.717.68710.960.0245813742242243544637410880759390195182514299526399599392526731634044783082061102605857694565884469034584986088449184932813956334914475
13.9914.744.816110.6137.83.95912.328.70714.940.02727966493278032311849934838980852110.8613.924.544113.9160.14.70713.7512.1714.540.02418073585721845636148385687082941811.8513.113.061138.4135.64.35314.717.68710.960.0245813742242243544637410880759390195110.2513.214.380149.8149.73.34613.799.18316.580.019582514299526399599392526731634044714.5414.033.755131.3174.24.73411.617.21014.230.022383082061102605857694565884469034512.1514.714.122125.9102.93.52312.3610.8124.740.032284986088449184932813956334914475
7966493278032311849934838980852110.8613.924.544113.9160.14.70713.7512.1714.540.02418073585721845636148385687082941811.8513.113.061138.4135.64.35314.717.68710.960.0245813742242243544637410880759390195110.2513.214.380149.8149.73.34613.799.18316.580.019582514299526399599392526731634044714.5414.033.755131.3174.24.73411.617.21014.230.022383082061102605857694565884469034512.1514.714.122125.9102.93.52312.3610.8124.740.032284986088449184932813956334914475
10.8613.924.544113.9160.14.70713.7512.1714.540.02418073585721845636148385687082941811.8513.113.061138.4135.64.35314.717.68710.960.0245813742242243544637410880759390195110.2513.214.380149.8149.73.34613.799.18316.580.019582514299526399599392526731634044714.5414.033.755131.3174.24.73411.617.21014.230.022383082061102605857694565884469034512.1514.714.122125.9102.93.52312.3610.8124.740.032284986088449184932813956334914475
80 735 857 218 456 361 483 85 687 082 9418 11.85 13.11 3.061 138.4 135.6 4.353 14.71 7.687 10.96 0.0245 81 374 224 224 354 463 741 088 075 939 01951 10.25 13.21 4.380 149.8 149.7 3.346 13.79 9.183 16.58 0.0195 82 51 429 952 639 959 939 252 673 163 40447 14.54 14.03 3.755 131.3 174.2 4.734 11.61 7.210 14.23 0.0223 83 082 061 102 605 857 694 565 884 469 0345 12.15 14.71 4.122 125.9 102.9 3.523 12.36 10.81 24.74 0.0322 84 986
11.85 13.11 3.061 138.4 135.6 4.353 14.71 7.687 10.96 0.0245 81 374 224 224 354 463 741 088 075 939 01951 10.25 13.21 4.380 149.8 149.7 3.346 13.79 9.183 16.58 0.0195 82 51 429 952 639 959 939 252 673 163 40447 14.54 14.03 3.755 131.3 174.2 4.734 11.61 7.210 14.23 0.0223 83 082 061 102 605 857 694 565 884 469 0345 12.15 14.71 4.122 125.9 102.9 3.523 12.36 10.81 24.74 0.0322 84 986 088 449 184 932 81 395 633 49 14475
81 374 224 224 354 463 741 088 075 939 01951 10.25 13.21 4.380 149.8 149.7 3.346 13.79 9.183 16.58 0.0195 82 51 429 952 639 959 939 252 673 163 40447 14.54 14.03 3.755 131.3 174.2 4.734 11.61 7.210 14.23 0.0223 83 082 061 102 605 857 694 565 884 469 0345 12.15 14.71 4.122 125.9 102.9 3.523 12.36 10.81 24.74 0.0322 84 986 088 449 184 932 81 395 633 49 14475
10.25 13.21 4.380 149.8 149.7 3.346 13.79 9.183 16.58 0.0195 82 51 429 952 639 959 939 252 673 163 40447 14.54 14.03 3.755 131.3 174.2 4.734 11.61 7.210 14.23 0.0223 83 082 061 102 605 857 694 565 884 469 0345 12.15 14.71 4.122 125.9 102.9 3.523 12.36 10.81 24.74 0.0322 84 986 088 449 184 932 81 395 633 49 14475
82 51 429 952 639 959 939 252 673 163 40447 14.54 14.03 3.755 131.3 174.2 4.734 11.61 7.210 14.23 0.0223 83 082 061 102 605 857 694 565 884 469 0345 12.15 14.71 4.122 125.9 102.9 3.523 12.36 10.81 24.74 0.0322 84 986 088 449 184 932 81 395 633 49 14475
14.54 14.03 3.755 131.3 174.2 4.734 11.61 7.210 14.23 0.0223 83 082 061 102 605 857 694 565 884 469 0345 12.15 14.71 4.122 125.9 102.9 3.523 12.36 10.81 24.74 0.0322 84 986 088 449 184 932 81 395 633 49 14475
83 082 061 102 605 857 694 565 884 469 0345 12.15 14.71 4.122 125.9 102.9 3.523 12.36 10.81 24.74 0.0322 84 986 088 449 184 932 81 395 633 49 14475
12.15 14.71 4.122 125.9 102.9 3.523 12.36 10.81 24.74 0.0322 84 986 088 449 184 932 81 395 633 49 14475
84 980 088 449 184 932 81 395 033 49 14475
65 465 726 041 555 055 109 561 696 959 50470 14.20 12.65 2.047 117.4 150.0 4.625 12.18 11.02 21.68 0.0214
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{bmatrix} 11.47 & 14.04 & 4.000 & 131.3 & 177.0 & 4.244 & 14.07 & 7.013 & 13.30 & 0.0200 \\ 87 & 959 & 694 & 0.27 & 0.48 & 0.68 & 898 & 697 & 0.48 & 0.20 & 0.2225 \\ \end{bmatrix}$
$\begin{bmatrix} 12.37 \\ 10.05 \\ 5.725 \\ 113.5 \\ 120.0 \\ 5.701 \\ 11.47 \\ 11.47 \\ 11.42 \\ 12.70 \\ 0.0285 \\ $
89 136 782 769 109 537 122 707 347 694 99966

902312796943249795253189146923121144.680137.613.83.2413.967.89113.680.243117.7012.6712.674.952147.113.514.19010.3911.7612.190.23392007007381429024761168713833965193599986905051219054266011191111.4.910.563.7811.1712.693.9812.296.5912.06.5912.00.2229486412.29126.873863.7012.75.6312.09.249.249.2511.731.6191.7176.643956.682.110.554.759.2713.013.714.79.249.2513.013.714.013.513.013.713.013.714.714.015.80.2314.714.115.813.114.714.115.813.114.714.115.813.114.714.115.813.214.1<		13.28	14.47	4.734	119.9	154.1	4.380	10.76	9.727	24.23	0.0265
9112.514.404.680137.6131.83.22413.967.89111.680.0249112.6712.6712.674.952147.1135.14.19010.3911.7612.190.0239207700738142902476116871388396519398690505411444.47613.865.71413.520.0274939809050541144.47613.865.71413.520.02749486412291261712.8331812.296.59812.095999510.7312.973.42112.5517.863.70012.775.3813.720.02279510.7312.973.44212.1517.863.70012.775.3813.410.030196823347116878555073467383.410.0301975519529561695719120211.88.3410.03019890576938863311.113.813.829.911.0760.2379895516301415512.9717.815.800.0251.0501.0509955863916316317.715.8313.1113.8113.421.0761.0239911.415.830.29417.8	90	231	279	694	32	497	952	531	891	469	2312
9112.547627219367492591563672138112.674.527147.113.514.19010.391.761.2190.2033920700073814290247611.68713520.02749359998690505412.8190542860.1119119359998690505412.819.90542860.1419119484012.29126873883675226391.700.02279512.96191.77646395682110.958.720.02279512.96191.77646395682110.588.740.02179633.334711.6878555070346738.770.4704975519529256195719120.21.721.580.02319890576938863211.73.813.829.311.756.121.760.229895576938812.210.41.756.121.760.221.750.23995813.313.21.741.781.756.121.760.221.750.239115.41.741.781.756.121.761.75 <td></td> <td></td> <td>14.40</td> <td>4.680</td> <td>137.6</td> <td>131.8</td> <td>3.224</td> <td>13.96</td> <td>7.891</td> <td>11.68</td> <td>0.0246</td>			14.40	4.680	137.6	131.8	3.224	13.96	7.891	11.68	0.0246
12.6712.674.952147.1135.14.19010.3911.7612.190.0239212.4812.153.76113.8014.814.814.814.814.814.914.814.912.8012.809869050.4212.813.8613.8615.8615.8617.9119.119486412.291.268738.836759263.9317.00.02212.9112.9112.9117.817.817.817.817.90.230.02112.9112.9112.9117.817.817.817.917.90.230.249.5512.9113.9117.764.095.06812.1717.80.230.249.5713.0211.174.78911.9111.1111.9112.1111.1011.1111.1114.1111.11 </td <td>91</td> <td>12.5</td> <td>476</td> <td>272</td> <td>19</td> <td>367</td> <td>49</td> <td>259</td> <td>156</td> <td>367</td> <td>2138</td>	91	12.5	476	272	19	367	49	259	156	367	2138
92007007381429024761168713883965112.4612.154.76114.3611.4.44.47613.865.71413.260.0274935999860500542180542800411911114.0910.563.27811.7126.93.91812.296.5917.600.0292948641229126873883675226.5917.600.02929512961917.76463906821.095.38.3.20.02719682334711.687815.516.01.4.01.8.32.3.40.03019682334716.687855.07.73.6.01.7.78.3.32.3.40.03019755195292561957.19.121.6.21.6.21.6.21.6.21.6.2980576938663121.13.181.3.29.3.11.1.50.0251989557693866121.5.21.6.21.6.21.6.21.6.21.6.29955816.30.1455.71.6.21.6.21.6.21.6.21.6.21.6.21011.681.5.91.6.21.6.21.6.21.6.21.6.21.6.21.6.29955816.31.6.21.6.21.6.21.6.2		12.67	12.67	4.952	147.1	135.1	4.190	10.39	11.76	12.19	0.0233
12.4612.454.7613.4614.4713.865.71413.520.0274935999609549141915419154191114.0910.503.7211.712.0938836759263912.00.02929486412291261838836759263912.05029512.961917.764638.061.0110.8331.0210.2752.3813.020.0219512.961917.764635.067.0111.0331.0313.030.0219682.334711.6878.067.0131.0013.0313.030.0219755.195.292.561957.191.20.291.215.030.0219895.793.863.021.131.0317.749.053.10.0219955.815.393.211.431.431.413.217.491.217.69055.816.301.455.542.967.353.114.50.0219155.816.301.455.542.967.353.114.50.0239255.816.301.455.542.967.353.114.50.0239311.4415.514.515.514.514.514.514.59415.5	92	007	007	381	429	02	476	116	871	388	39651
9359998690505421819.05428604.1191114.0910.503.27811.1712.093.91812.096.59817.000.0292948641229126873886175926.59813.700.22795129619177646395682110.95449437595129619177646395607346130.021796823347116878506070346130.021975119529256195719120.1216327779890576938863321134714.754.0216.210.03989057693886332113.14714.8931.450.0237995821630.148842113.14714.953.10.0237995821630.3114.7514.193.14314.7514.953.110.0311.4111.513.03413.143.14717.551.9311.4716.910.29915821630.3114.73.1433.14710.2913.314.70.024711.4314.544.51714.1915.84.7814.9013.3314.70.024711.4314.544.5171		12.46	12.15	4.761	143.6	114.4	4.476	13.86	5.714	13.52	0.0274
14.0910.503.27811.1712.693.91812.296.59817.600.022194864122912687388367592639204596310.7312.973.442121.517.863.70012.775.23813.700.02279512.96191776463956811.0011.8323.410.0301968233471168785650073467383704704975519529256195719120291216327479890576938863321134714.751.1.201.0.3277479955816301458542967365397312.500081011.6417.904.938120.216314.7514.800.02999955816301458542967365397312.500081011.6817.604.93812.0216314.800.02990.02911011.8314.544.517141.912.584.08112.9013.3311.470.02671167308207772851363641913.3314.90.02711111.8314.544.517141.912.5814.3314.914.5314.5314.53<	93	599	986	905	054	218	19	054	286	041	19111
94864122912687388367592639204596310.7312.973.4217.1517.863.7012.775.2813.720.0227951296191776463956821109543443759682334714.7811.9311.114.51714.0013.2304704975519256195719120291216327747989057693886332113471.756.12210.600.22717989057693886332113471.756.12210.760.237179955816301458542967365397312.500081011.6412.9983812.0210.403.25114.5013.2210.299055816301458542967365397312.50081011.6812.99433812.0210.403.25114.5013.3314.470.2471167382607772850363381633314.790.2491011.6813.4545.772.863481633314.790.2491112.8913.8113.4513.413.413.413.413.413.413.4111		14.09	10.56	3.278	111.7	126.9	3.918	12.29	6.598	17.60	0.0292
10.7312.973.4.4212.1.517.8.63.70012.775.2.3813.720.022795129619177646395682110954494375513.0711.174.7.8911.9.311.114.5.7111.001.8.323.410.030196823347116878500346738370470411.12711.304.312114.716.83.27813.017.27811.580.0231975519529526195719120291216327747989057693886332113471744950171053995816301485842967365397312.500081011.6812.904.93812.0210.403.25114.5011.2217.800.029703678167660418167016844961283641014.3314.544.51714.912.844.08113.4314.4710.247167305205992563463381633391602251012.3414.544.51714.912.843.0413.4314.470.0247167305295992563463763673414.5414.5510 <td>94</td> <td>864</td> <td>122</td> <td>912</td> <td>687</td> <td>388</td> <td>367</td> <td>592</td> <td>639</td> <td>204</td> <td>5963</td>	94	864	122	912	687	388	367	592	639	204	5963
95129619177646395682110954494375513.0711.174.789119.3111.14.71711.0011.8323.410.0301968233471168785650073467383.704704975519529256195719120291216327747989057693886332113471756.12210.760.023798905769388633211347174449531710539955816301458542967365397312.50.0297011.6812.004.938120.210.403.25114.5011.2217.800.029103678167760418167016844961283641011.6812.904.93812.9212.844.8413.813.8213.3314.470.02471673082007728503633816333959102051012.3614.833.9413.1413.433.0413.4213.4213.4213.431012.3614.833.9413.3412.9413.4313.4213.4213.421113.4314.4413.413.412.9413.4314.45		10.73	12.97	3.442	121.5	178.6	3.700	12.77	5.238	13.72	0.0227
13.0711.174.78911.911.114.51711.0011.8323.410.030196823347116878565007346738370470411.2711.304.312114.7162.83.27813.017.27811.580.023197551925925619571912029121632774798905769388633211347717.56.12210.760.0237989057693886332113.18313.829.9317.050.02579955816301458542967365397312.50081011.6812.904.9312.02104.03.25114.5011.221.7800.0257903678167760418167016849961283641014.3314.544.51713.1412.901.3311.470.02471167308207772850363381633311.470.02471011.3314.544.51713.1413.433.0413.3311.470.02471012.3614.833.9811.3113.433.07411.207.4119.130.02651014.3314.544.51713.1414.5414.5414.5414.5414.5	95	129	619	177	646	395	68	211	095	449	43755
96823347116878565007346738370470411.2711.304.312114.7162.83.27813.017.27811.580.2311975519256195719120291216.327747989057693886332113471744953171053989057693886332113.18313.829.9310.02579955816301458542967365397312.500081011.6812.904.93812.02104.03.25114.5011.2217.800.257905581667760418167016844961283641014.3314.544.517141.912.584.08112.9013.3311.470.025711673082007728503633816333959102051012.3614.883.98611.3113.4411.2913.3311.470.24761117.883.98613.1313.4411.2913.3311.470.24761117.883.98613.113.433.07411.2913.3311.470.24761112.843.98613.113.4314.2913.314.452.2481011.3813.5<		13.07	11.17	4.789	119.3	111.1	4.517	11.00	11.83	23.41	0.0301
11.2711.304.31211.47162.83.27813.017.27811.580.023197551952925619571912029121632774710.1111.713.469138.1142.74.36711.756.12210.760.0237989057693886332113471744953171539955816301458542967365397312.5002579955816301458542967365397312.500297036781677604181670168449612836441014.3314.544.517141.9125.84.08112.9013.3311.470.0247167308207772850363381633395910251014.3314.544.517141.915.814.0413.027.41419.130.02491011.9813.524.83147.6178.04.28512.439.55113.920.0167398041537917925714197701857981011.9813.524.84314.76178.04.28512.439.55113.920.016739804153712.5112.55714197701 <td>96</td> <td>823</td> <td>347</td> <td>116</td> <td>878</td> <td>565</td> <td>007</td> <td>34</td> <td>673</td> <td>837</td> <td>04704</td>	96	823	347	116	878	565	007	34	673	837	04704
97551952925619571912029121632774710.1111.713.469138.1142.74.36711.756.12210.760.023798905769388633211347174495310.02379955816301458542967365397312.50.02871011.6812.904.9312.02104.03.25114.5011.2217.800.2990363781677604181670168449612836441014.3314.544.517141.9125.84.08112.9013.3311.470.02471673082007728503633816333959102051012.3614.883.98611.3113.43.07411.207.41419.130.0249239509539529369483748966265024961011.9813.524.843147.617.804.24313.4013.4213.429.811014.9814.134.443136.5157.94.93814.3013.2614.452651014.9814.063.67312.5112.554.02713.1713.4524.512511014.9814.053.67112.5514.75 <td></td> <td>11.27</td> <td>11.30</td> <td>4.312</td> <td>114.7</td> <td>162.8</td> <td>3.278</td> <td>13.01</td> <td>7.278</td> <td>11.58</td> <td>0.0231</td>		11.27	11.30	4.312	114.7	162.8	3.278	13.01	7.278	11.58	0.0231
10.1111.713.469138.1142.74.36711.756.12210.760.02379890576938863321134717449531710539955816301458542967365397312.50081011.6812.904.938120.2104.03.25114.0511.2217.800.2970036781677604181670168449612836441014.3314.544.517141.9125.84.08112.9013.3311.470.02971673082007728503633816333959102051012.3614.883.986113.113.43.07411.207.41419.130.0269239509539529369483748966265024961011.9813.524.843147.6178.04.28512.439.5113.920.016739804153787195271419770185798981014.9814.1313.65157.94.93814.3013.6218.620.01921014.9814.063.65112.5514.3714.3414.5615.914.3314.5414.5514.551014.9814.063.651	97	551	952	925	619	571	912	02	912	163	27747
9890576938863321134717449531710539955816301458542967365397312.500081011.6812.904.938120.2104.03.25114.5011.2217.800.0299036781677604181670168449612836441014.3314.544.517141.9125.84.08112.9013.3311.470.0247167308200772850363381633311.470.02691012.3614.883.986113.1133.43.07411.207.41419.130.02691011.9813.524.843147.6178.04.28512.439.5113.920.016739509539529369483748966265024961011.9813.524.843147.6178.04.28512.439.25113.920.0167398041537871952714197701857981013.5814.134.448136.5157.94.93814.3013.2618.620.019248442659830659277627253124526181014.9814.063.673125.1125.583		10.11	11.71	3.469	138.1	142.7	4.367	11.75	6.122	10.76	0.0237
11.4411.583.034136.2117.13.18313.829.931()0.02579955816301458542967365397312.500081011.6812.904.938120.2104.03.25114.5011.2217.800.0299036781677604181670168449612836441014.3314.544.517141.9125.84.08112.9013.3311.470.0247167308200772850363381633395910251012.3614.883.966113.113.443.07411.207.4419.130.0269239509539529369483748966265024961011.9813.524.843147.6178.04.28512.439.25113.920.0167398041537871952714197701857981013.5814.134.448136.5157.94.93814.3013.2618.620.0192484426598306592776272531245226181014.9814.063.673125.1125.54.02713.077.07410.450.023652994634690285211 <td< td=""><td>98</td><td>905</td><td>769</td><td>388</td><td>633</td><td>211</td><td>347</td><td>17</td><td>449</td><td>531</td><td>71053</td></td<>	98	905	769	388	633	211	347	17	449	531	71053
9955816301458542967365397312.500081011.6812.904.938120.2104.03.25114.5011.2217.800.0299036781677604181670168449612836441014.3314.544.517141.9125.84.08112.9013.3311.470.02471673082007728503633816333959102051012.3614.883.986113.113.343.07411.207.41419.130.0247239509529369483748966265024961011.9813.524.843147.617.804.28512.439.613.50981011.9814.134.4481365157.97.1419.7701857981013.5814.134.4481365152.77.76272531245226181014.9814.063.673125.1125.74.02713.0710.459.45521.70.017852994634690285211823918305930591014.9814.063.673125.1152.613.4110.459.45521.270.01786952143782151857 <td></td> <td>11.44</td> <td>11.58</td> <td>3.034</td> <td>136.2</td> <td>117.1</td> <td>3.183</td> <td>13.82</td> <td>9.931</td> <td></td> <td>0.0257</td>		11.44	11.58	3.034	136.2	117.1	3.183	13.82	9.931		0.0257
1011.6812.904.938120.2104.03.25114.5011.2217.800.0299036781677604181670168449612836441014.3314.544.517141.9125.84.08112.9013.3311.470.02471673082007728503633816333959102051012.3614.883.986113.113.343.07411.207.41419.130.0249239509529369483748966265024961011.9813.524.843147.6178.04.28512.439.613.57981013.5814.134.448136.5157.97.141977018579981013.5814.134.448136.5152.97.76272531245226181014.9814.063.673125.1125.74.02713.077.0710.450.02371014.9814.063.673125.1125.74.02713.077.0710.450.2561014.9814.05147.4167.73.59110.459.45521.270.01781014.9314.333.707121.8140.53.06112.5613.4617.390.02501014.3314.343.904 <td< td=""><td>99</td><td>558</td><td>163</td><td>014</td><td>585</td><td>429</td><td>673</td><td>653</td><td>973</td><td>12.5</td><td>0008</td></td<>	99	558	163	014	585	429	673	653	973	12.5	0008
036781677604181670168449612836441014.3314.544.517141.9125.84.08112.9013.3311.470.02471673082007728503633816333959102051012.3614.883.986113.1133.43.07411.207.41419.130.0269239509539529369483748966255024961011.9813.524.843147.6178.04.28512.439.25113.920.01673980415378719527141977018579981013.5814.134.448136.5157.94.93814.3013.2618.620.0192484426598306592776272531245226181014.9814.063.673125.1122.54.02713.077.07410.450.02385299463469028521182383918305091014.3914.073.455147.4167.73.59110.459.45521.270.01786952143782155837918782551685861014.1314.334.70712.8164.53.06112.4	10	11.68	12.90	4.938	120.2	104.0	3.251	14.50	11.22	17.80	0.0299
1014.3314.544.517141.9125.84.08112.9013.3311.470.02471673082007728503633816333959102051012.3614.883.986113.1133.43.07411.207.41419.130.0269239509539529369483748966265024961011.9813.524.843147.6178.04.28512.439.25113.920.01673980415378719527141977018579981013.5814.134.448136.5157.94.93814.3013.2618.620.0192484426598306592776272531245226181014.9814.063.673125.1122.54.02713.077.07410.450.02385299463469028521182383918305091011.3011.073.455147.4167.73.59110.459.45521.270.0178695214378215551837918782551635861014.1314.334.707121.8140.53.06112.5613.4617.390.02507265673483367442	0	367	816	776	041	816	701	68	449	612	83644
1673082007728503633816333959102051012.3614.883.966113.1133.43.07411.207.41419.130.0269239509539529369483748966265024961011.9813.524.843147.6178.04.28512.439.25113.920.01673980415378719527141977018579981013.5814.134.448136.5157.94.93814.3013.2618.620.0192484426598306592776272531245226181014.9814.063.673125.1122.54.02713.077.07410.450.02385299463469028521182383918305091011.3011.073.455147.4167.73.59110.459.45521.270.017869521437821555183791878255163531014.1314.334.707121.8140.53.06112.5613.4617.390.0250726567348336744224803939796635731014.8813.483.904136.8168.83.972 </td <td>10</td> <td>14.33</td> <td>14.54</td> <td>4.517</td> <td>141.9</td> <td>125.8</td> <td>4.081</td> <td>12.90</td> <td>13.33</td> <td>11.47</td> <td>0.0247</td>	10	14.33	14.54	4.517	141.9	125.8	4.081	12.90	13.33	11.47	0.0247
1012.3614.883.986113.1133.43.07411.207.41419.130.0269239509539529369483748966265024961011.9813.524.843147.6178.04.28512.439.25113.920.01673980415378719527141977018579981013.5814.134.448136.5157.94.93814.3013.2618.620.0192484426598306592776272531245226181014.9814.063.673125.1122.54.02713.077.07410.450.02385299463469028521182383918305091011.3011.073.455147.4167.73.59110.459.45521.270.0178695214378215583791878255168581014.1314.334.707121.8140.53.06112.5613.4617.390.02507265673483367442224803939796635731014.8813.443.904136.8168.83.97214.338.57122.600.01908095639762027435789	1	673	082	007	728	503	633	816	333	959	10205
2 395 095 395 293 694 83 748 966 265 02496 10 11.98 13.52 4.843 147.6 178.0 4.285 12.43 9.251 13.92 0.0167 3 98 041 537 871 952 714 197 701 857 998 10 13.58 14.13 4.448 136.5 157.9 4.938 14.30 13.26 18.62 0.0192 4 844 265 98 306 592 776 272 531 245 22618 10 14.98 14.06 3.673 125.1 122.5 4.027 13.07 7.074 10.45 0.0238 5 299 463 469 02 85 211 823 83 918 3050 10 11.30 11.07 3.455 147.4 167.7 3.591 10.45 3.46 17.27	10	12.36	14.88	3.986	113.1	133.4	3.074	11.20	7.414	19.13	0.0269
10 11.98 13.52 4.843 147.6 178.0 4.285 12.43 9.251 13.92 0.0167 3 98 041 537 871 952 714 197 701 857 998 10 13.58 14.13 4.448 136.5 157.9 4.938 14.30 13.26 18.62 0.0192 4 844 265 98 306 592 776 272 531 245 22618 10 14.98 14.06 3.673 125.1 122.5 4.027 13.07 7.074 10.45 0.0238 5 299 463 469 02 85 211 823 83 918 3050 10 11.30 11.07 3.455 147.4 167.7 3.591 10.45 9.455 21.27 0.0178 6 952 143 782 155 837 918 782 511 6553	2	395	095	395	293	694	83	748	966	265	02496
3 98 041 537 871 952 714 197 701 857 998 10 13.58 14.13 4.448 136.5 157.9 4.938 14.30 13.26 18.62 0.0192 4 844 265 98 306 592 776 272 531 245 22618 10 14.98 14.06 3.673 125.1 122.5 4.027 13.07 7.074 10.45 0.0238 5 299 463 469 02 85 211 823 83 918 30509 10 11.30 11.07 3.455 147.4 167.7 3.591 10.45 9.455 21.27 0.0178 6 952 143 782 15 551 837 918 782 551 6858 10 14.13 14.33 4.707 121.8 140.5 3.061 12.56 13.46 17.39	10	11.98	13.52	4.843	147.6	178.0	4.285	12.43	9.251	13.92	0.0167
10 13.58 14.13 4.448 136.5 157.9 4.938 14.30 13.26 18.62 0.0192 4 844 265 98 306 592 776 272 531 245 22618 10 14.98 14.06 3.673 125.1 122.5 4.027 13.07 7.074 10.45 0.0238 5 299 463 469 02 85 211 823 83 918 30509 10 11.30 11.07 3.455 147.4 167.7 3.591 10.45 9.455 21.27 0.0178 6 952 143 782 15 551 837 918 782 551 6858 10 14.13 14.33 4.707 121.8 140.5 3.061 12.56 13.46 17.39 0.0250 7 265 673 483 367 442 224 803 939 796	3	98	041	537	8/1	952	/14	197	/01	857	998
4 844 265 98 306 592 776 272 531 245 22618 10 14.98 14.06 3.673 125.1 122.5 4.027 13.07 7.074 10.45 0.0238 5 299 463 469 02 85 211 823 83 918 30509 10 11.30 11.07 3.455 147.4 167.7 3.591 10.45 9.455 21.27 0.0178 6 952 143 782 15 551 837 918 782 551 68586 10 14.13 14.33 4.707 121.8 140.5 3.061 12.56 13.46 17.39 0.0250 7 265 673 483 367 442 224 803 939 796 63573 10 14.88 13.48 3.904 136.8 168.8 3.972 14.33 8.571 2.60	10	13.58	14.13	4.448	136.5	157.9	4.938	14.30	13.26	18.62	0.0192
1014.9814.063.673125.1122.54.02713.077.07410.450.02385299463469028521182383918305091011.3011.073.455147.4167.73.59110.459.45521.270.0178695214378215551837918782551685861014.1314.334.707121.8140.53.06112.5613.4617.390.02507265673483367442224803939796635731014.8813.483.904136.8168.83.97214.338.57122.600.01908095639762027435789673429204363631013.6213.414.489143.0151.94.96510.359.86319.430.02099245837796612728986714946878402211113.4512.194.802122.9173.73.51014.8110.6113.210.01880238388721252415204293224429446681112.8410.764.476128.0100.84.44812.6312.6510.860.0299101453119952163<	4	844	265	98	306	592	//6	2/2	531	245	22618
5 299 463 469 02 85 211 823 83 918 30509 10 11.30 11.07 3.455 147.4 167.7 3.591 10.45 9.455 21.27 0.0178 6 952 143 782 15 551 837 918 782 551 68586 10 14.13 14.33 4.707 121.8 140.5 3.061 12.56 13.46 17.39 0.0250 7 265 673 483 367 442 224 803 939 796 63573 10 14.88 13.48 3.904 136.8 168.8 3.972 14.33 8.571 22.60 0.0190 8 095 639 762 027 435 789 673 429 204 36363 10 13.62 13.41 4.489 143.0 151.9 4.965 10.35 9.863 19.43	10	14.98	14.06	3.673	125.1	122.5	4.027	13.07	7.074	10.45	0.0238
1011.3011.073.455147.4167.73.59110.459.45521.270.0178695214378215551837918782551685861014.1314.334.707121.8140.53.06112.5613.4617.390.02507265673483367442224803939796635731014.8813.483.904136.8168.83.97214.338.57122.600.01908095639762027435789673429204363631013.6213.414.489143.0151.94.96510.359.86319.430.02099245837796612728986714946878402211113.4512.194.802122.9173.73.51014.8110.6113.210.01880238388721252415204293224429446681112.8410.764.476128.0100.84.44812.6312.6510.860.029910145311995216398605306735016811112.5313.353.646146.0132.93.08812.1514.5522.290.0256112.5313.353.646146.0 <td>5</td> <td>299</td> <td>463</td> <td>469</td> <td>02</td> <td>85</td> <td>211</td> <td>823</td> <td>83</td> <td>918</td> <td>30509</td>	5	299	463	469	02	85	211	823	83	918	30509
695214378215551837918782551683861014.1314.334.707121.8140.53.06112.5613.4617.390.02507265673483367442224803939796635731014.8813.483.904136.8168.83.97214.338.57122.600.01908095639762027435789673429204363631013.6213.414.489143.0151.94.96510.359.86319.430.02099245837796612728986714946878402211113.4512.194.802122.9173.73.51014.8110.6113.210.01880238388721252415204293224429446681112.8410.764.476128.0100.84.44812.6312.6510.860.029910145311995216398605306735016811112.5313.353.646146.0132.93.08812.1514.5522.290.0256112.5313.353.646146.0132.93.08812.1514.5522.290.0256	10	11.30	11.07	3.455	147.4	167.7	3.591	10.45	9.455	21.27	0.0178
1014.1314.334.707121.8140.53.06112.5613.4617.390.02507265673483367442224803939796635731014.8813.483.904136.8168.83.97214.338.57122.600.01908095639762027435789673429204363631013.6213.414.489143.0151.94.96510.359.86319.430.02099245837796612728986714946878402211113.4512.194.802122.9173.73.51014.8110.6113.210.01880238388721252415204293224429446681112.8410.764.476128.0100.84.44812.6312.6510.860.029910145311995216398605306735016811112.5313.353.646146.0132.93.08812.1514.5522.290.0256112.5313.353.646146.0132.93.08812.1514.5522.290.0256	0	952	143	/82	15	551	837	918	12.40	551	08580
7 265 673 483 367 442 224 803 939 796 63373 10 14.88 13.48 3.904 136.8 168.8 3.972 14.33 8.571 22.60 0.0190 8 095 639 762 027 435 789 673 429 204 36363 10 13.62 13.41 4.489 143.0 151.9 4.965 10.35 9.863 19.43 0.0209 9 245 837 796 612 728 986 714 946 878 40221 11 13.45 12.19 4.802 122.9 173.7 3.510 14.81 10.61 13.21 0.0188 0 238 388 721 252 415 204 293 224 429 44668 11 12.84 10.76 4.476 128.0 100.8 4.448 12.63 10.66 0.0299 <td>10</td> <td>14.13</td> <td>14.33</td> <td>4.707</td> <td>121.8</td> <td>140.5</td> <td>3.061</td> <td>12.50</td> <td>13.40</td> <td>17.39</td> <td>0.0250</td>	10	14.13	14.33	4.707	121.8	140.5	3.061	12.50	13.40	17.39	0.0250
1014.8813.483.904136.8168.83.97214.338.37122.600.01908095639762027435789673429204363631013.6213.414.489143.0151.94.96510.359.86319.430.02099245837796612728986714946878402211113.4512.194.802122.9173.73.51014.8110.6113.210.01880238388721252415204293224429446681112.8410.764.476128.0100.84.44812.6312.6510.860.029910145311995216398605306735016811112.5313.353.646146.0132.93.08812.1514.5522.290.0256	/	205	12.40	483	307	442	224	803	939	790	03573
8 095 059 762 027 435 789 675 429 204 56363 10 13.62 13.41 4.489 143.0 151.9 4.965 10.35 9.863 19.43 0.0209 9 245 837 796 612 728 986 714 946 878 40221 11 13.45 12.19 4.802 122.9 173.7 3.510 14.81 10.61 13.21 0.0188 0 238 388 721 252 415 204 293 224 429 44668 11 12.84 10.76 4.476 128.0 100.8 4.448 12.63 12.65 10.86 0.0299 1 014 531 19 952 163 98 605 306 735 01681 11 12.53 13.35 3.646 146.0 132.9 3.088 12.15 14.55 22.29	010	14.88	13.48	3.904	130.8	100.0	3.972	14.33	8.571 420	22.00	0.0190
10 13.62 13.41 4.489 143.0 131.9 4.965 10.33 9.865 19.45 0.0209 9 245 837 796 612 728 986 714 946 878 40221 11 13.45 12.19 4.802 122.9 173.7 3.510 14.81 10.61 13.21 0.0188 0 238 388 721 252 415 204 293 224 429 44668 11 12.84 10.76 4.476 128.0 100.8 4.448 12.63 12.65 10.86 0.0299 1 014 531 19 952 163 98 605 306 735 01681 11 12.53 13.35 3.646 146.0 132.9 3.088 12.15 14.55 22.29 0.0256	0	12.62	12 /1	102	142.0	455	109	10.25	429	204	0 0 2 0 0
11 13.45 12.19 4.802 122.9 173.7 3.510 14.81 10.61 13.21 0.0188 0 238 388 721 252 415 204 293 224 429 44668 11 12.84 10.76 4.476 128.0 100.8 4.448 12.63 12.65 10.86 0.0299 1 014 531 19 952 163 98 605 306 735 01681 11 12.53 13.35 3.646 146.0 132.9 3.088 12.15 14.55 22.29 0.0256 2 404 356 3.646 146.0 132.9 3.088 12.15 14.55 22.29 0.0256	0	13.0Z	13.41 827	4.409	143.U 612	770	4.905	71/	9.005 Q/A	19.45 870	0.0209 10209
11 13.43 12.19 4.802 122.9 173.7 3.310 14.81 10.01 13.21 0.0188 0 238 388 721 252 415 204 293 224 429 44668 11 12.84 10.76 4.476 128.0 100.8 4.448 12.63 12.65 10.86 0.0299 1 014 531 19 952 163 98 605 306 735 01681 11 12.53 13.35 3.646 146.0 132.9 3.088 12.15 14.55 22.29 0.0256	9 11	12 / 5	12 10	1 902	122 0	172 7	2 510	11 01	10.61	070	40221
11 12.84 10.76 4.476 128.0 100.8 4.448 12.63 12.65 10.86 0.0299 1 014 531 19 952 163 98 605 306 735 01681 11 12.53 13.35 3.646 146.0 132.9 3.088 12.15 14.55 22.29 0.0256	0	13.43 228	388	721	122.9 252	1/5./ Д15	2.210	202	224	13.21 170	11668
11 12.54 10.76 1.476 12.50 12.65 12.65 10.86 0.0299 1 014 531 19 952 163 98 605 306 735 01681 11 12.53 13.35 3.646 146.0 132.9 3.088 12.15 14.55 22.29 0.0256	11	12.20	10.76	Λ Λ Λ Λ	128 0	100 0	<u>204</u> Δ ΛΛΩ	12.62	12 65	10.86	0 0200
11 12.53 13.35 3.646 146.0 132.9 3.088 12.15 14.55 22.29 0.0256	1	014	521	19	952	163	98	605	306	725	01681
	11	12 52	13 25	3 6/6	146.0	132.0	3 088	12 15	14 55	22.20	0.0256
2 401 034 259 544 252 435 986 782 592 46542	2	401	034	259	544	252.5	435	986	782	592	46542

11	10.08	14.23	4.367	131.0	159.5	4.095	11.13	14.82	13.62	0.0242
3	503	469	347	884	918	238	946	993	245	001
11	10.62	14.43	4.462	122.6	124.7	4.979	11.34	8.435	17.29	0.0292
4	925	878	585	531	619	592	354	374	592	3254
11	10.93	11.95	3.088	142.5	105.7	4.571	12.84	12.04	17.19	0.0266
5	537	578	435	17	143	429	014	082	388	38899
11	11.51	14.91	4.897	122.1	143.2	3.333	10.96	10.06	14.03	0.0226
6	361	497	959	088	653	333	939	803	061	89794
11	12.09	13.79	3.659	110.9	161.2	4.122	10.15	8.911	12.80	0.0246
7	184	252	864	524	245	449	306	565	612	55695
11	10.42	12.87	4.829	126.7	138.9	4.054	12.39	14.96	23.21	0.0265
8	517	415	932	347	116	422	796	599	429	61783
11	11.37	10.62	4.190	127.5	174.8	4.340	10.93	10.40	10.25	0.0218
9	755	925	476	51	299	136	537	816	51	0121
12	11.17	10.79	4.244	145.7	118.2	4.911	11.54	7.823	18.21	0.0222
0	347	932	898	823	313	565	762	129	429	00445
12	13.69	10.18	3.823	113.6	168.2	4.068	13.11	14.01	15.35	0.0229
1	048	707	129	735	993	027	224	361	714	61071
12	10.18	13.07	4.557	137.3	156.8	4.748	12.97	5.850	21.88	0.0205
2	707	823	823	469	707	299	619	34	776	9612
12	14.91	11.47	3.931	127.2	117.6	3.142	14.06	9.523	21.58	0.0254
3	497	959	973	789	871	857	463	81	163	79577
12	13.92	10.96	3.251	145.2	136.7	3.319	12.70	6.394	14.33	0.0224
4	857	939	701	381	347	728	408	558	673	47183
12	10.52	10.42	4.081	145.5	149.2	4.231	14.23	7.755	20.96	0.0209
5	721	517	633	102	517	293	469	102	939	72936
12	11.00	12.43	3.632	146.8	158.5	4.421	13.89	12.31	23.92	0.0189
6	34	197	653	707	034	769	456	293	857	7855
12	13.89	11.13	3.782	112.8	130.7	4.993	10.90	11.15	16.68	0.0285
7	456	946	313	571	483	197	136	646	367	15073
12	10.28	14.94	3.360	134.6	126.3	4.680	12.22	7.482	16.98	0.0281
8	912	898	544	259	946	272	789	993	98	92333
12	14.43	13.31	4.326	127.0	107.8		10.22	14.28	18.82	0.0296
9	8/8	633	531	068	912	4	109	5/1	653	83055
13	12.77	10.45	4.775	112.3	112.2	3.469	11.51	8.979	15.15	0.0276
0	211	918	51	129	449	388	361	592	306	8588
13	12.63	13.18	3.727	139.5	115.5	4.721	10.25	9.319	10.66	0.0264
1	605	027	891	238	102	088	51	/28	327	4601
13	11.34	10.93	3.197	131.6	1/2.6	3.006	13.28	10.88	19.23	0.0232
2	354	537	279	327	531	803	231	435	469	/3651
13	13.75	11.64	4.965	141.1	106.2	3.292	13.35	11.08	16.78	0.0270
3	85	966	986	565	585	51/	034	844	5/1	/6635
13	11.20	11.98	4.108	120	148.7	3.210	12.67	5.102	24.54	0.0211
4	/48	98	844	130	075	884	007	041	082	45319
13	14.50	12.02	3.496	141.4	131.2	4.585	11.30	5.918	21.98	0.0242
5	68	381	599	286	925	034	952	367	98	27801

13	11.13	12.53	3.863	117.7	101.9	3.986	12.09	5.782	24.03	0.0201
6	946	401	946	551	048	395	184	313	061	18442
13	10.76	12.63	4.258	149.0	101.3	3.782	13.14	8.027	22.80	0.0206
7	531	605	503	476	605	313	626	211	612	51781
13	12.43	12.77	4.693	123.4	170.4	4.789	12.60	6.054	12.39	0.0258
8	197	211	878	694	762	116	204	422	796	61365
13	10.45	13.01	3.006	113.4	157.4	3.809	11.78	8.639	21.17	0.0238
9	918	02	803	014	15	524	571	456	347	21607
14	12.73	13.62	3.877	148.2	105.1	4.897	14.03	10.34	17.09	0.0260
0	81	245	551	313	701	959	061	014	184	00726
14	12.94	13.75	3.210	126.4	136.1	4.925	14.09	5.510	19.54	0.0249
1	218	85	884	626	905	17	864	204	082	794
14	12.26	13.89	4.625	135.4	175.3	3.197	13.69	10.54	23.72	0.0249
2	19	456	85	422	741	279	048	422	449	79423
14	14.77	14.37	3.265	143.8	123.1	3.904	12.19	13.74	16.27	0.0252
3	891	075	306	776	293	762	388	15	551	40437
14	12.05	14.50	4.013	110.1	164.4	3.795	14.47	12.58	19.33	0.0235
4	782	68	605	361	898	918	279	503	673	57611
14	12.32	14.60	3.224	137.0	163.9	4.149	12.80	13.60	10.35	0.0244
5	993	884	49	748	456	66	612	544	714	47436
14	11.71	14.64	3.619	138.9	145.4	3.632	10.59	5.374	15.25	0.0178
6	769	286	048	796	422	653	524	15	51	87727
14	11.95	14.81	3.482	140.0	120.9	4.299	14.37	14.35	18.92	0.0211
7	578	293	993	68	524	32	075	374	857	35081

Na	P1	P2	P3	P4	P5	P6	P7	P8	Р9	Strain
me										Range
	12.56	10.01	4.435	135.1	139.4	3.496	14.40	9.795	10.05	0.0200
1	803	701	374	701	558	599	476	918	102	74435
	12.12	12.60	3.714	124.5	150.8	4.857	10.01	14.76		0.0208
2	585	204	286	578	844	143	701	19	17.5	37242
	10.05	12.73	3.945	122.3	144.8	3.020	13.92	12.72	19.64	0.0222
3	102	81	578	81	98	408	857	109	286	68571
	11.78	10.25	4.612	118.5	134.0	4.544	13.21	8.503	24.94	0.0260
4	571	51	245	714	136	218	429	401	898	75925
	12.19	11.27	4.204	128.3	179.7	3.891	10.05	7.006	21.78	0.0179
5	388	551	082	673	279	156	102	803	571	52817
	14.71		3.836	144.4	155.2	3.673	14.74	12.92	13.41	0.0152
6	088	12.5	735	218	381	469	49	517	837	42203
	10.15	11.78	4.884	123.7	124.2	3.442	11.10	7.551	20.05	0.0242
7	306	571	354	415	177	177	544	02	102	33647
	13.35	11.03	3.020	121.2	171.0	4.489	12.12	6.870	15.86	0.0173
8	034	741	408	925	204	796	585	748	735	15517
	10.59	10.52	4.353	115.3	132.3	4.816	11.27	7.959	13.82	0.0260
9	524	721	741	061	81	327	551	184	653	22075
	11.92	12.39		114.2	153.6	4.952	11.98	5.442	22.70	0.0231
10	177	796	4	177	054	381	98	177	408	26874
	10.79	10.83	3.768	111.4	137.2	3.605	11.71	13.80	22.09	0.0279
11	932	333	707	966	789	442	769	952	184	81976
	14.81	13.45	4.176	121.0	108.4	4.040	10.66	6.190	19.74	0.0259
12	293	238	871	204	354	816	327	476	49	27385
	10.96	10.73	3.591	110.4	134.5	4.258	14.43	10.13	13.01	0.0254
13	939	129	837	082	578	503	878	605	02	61458
	13.18	11.88	4.639	126.1	165.5	3.265	11.41	14.48	23.52	0.0174
14	027	776	456	905	782	306	156	98	041	51553
	13.72	10.66	4.925	120.7	160.6	3.537	11.95	8.299	22.90	0.0208
15	449	327	17	483	803	415	578	32	816	87711
	13.04	13.72	4.340	112.0	163.4	3.646	13.52	5.306	19.84	0.0169
16	422	449	136	408	014	259	041	122	694	53865
	12.29	10.05	4.217	118.0	119.3	3.659	14.54	6.802	18.52	0.0239
17	592	102	687	272	197	864	082	721	041	4953
	10.22	11.81	3.537	116.1	166.1	4.666	13.62	10.95	21.47	0.0162
18	109	973	415	224	224	667	245	238	959	82878
	14.94	10.32	4.721	130.2	156.3	4.326	14.13	9.387	17.70	0.0220
19	898	313	088	721	265	531	265	755	408	43155
	10.69	13.55	4.870	132.1	102.4	4.653	13.65		16.37	0.0215
20	728	442	748	769	49	061	646	10	755	99832

C. DOE Design Points with EP Material Model

	14.47	11.10	4.857	132.7	147.6	3.102	10.83	10.74	14.74	0.0192
21	279	544	143	211	19	041	333	83	49	32647
	13.65	13.28	3.510	135.9	130.2	4.761	11.37	14.21	24.13	0.0228
22	646	231	204	864	041	905	755	769	265	38621
	10.35	13.99	3.700	115.8	106.8	3.578	13.72	8.775	15.45	0.0291
23	714	66	68	503	027	231	449	51	918	1545
	13.52	12.32	3.115	115.0	141.6	3.238	13.48	7.346	23.11	0.0231
24	041	993	646	34	327	095	639	939	224	08731
	11.54	13.96	3.918	139.2	153.0	3.360	14.91	13.87	14.13	0.0195
25	762	259	367	517	612	544	497	755	265	31402
	11.58	11.37	4.272	140.3	179.1	3.034	11.85	11.97	14.43	0.0180
26	163	755	109	401	837	014	374	279	878	58758
	13.01	14.67	3.891	116.6	171.5	3.823	10.49	12.38	20.45	0.0138
27	02	687	156	667	646	129	32	095	918	64829
	14.84	12.26	4.598	124.2	114.9	4.843	13.24	6.530	18.72	0.0243
28	694	19	639	857	66	537	83	612	449	28581
	10.56	11.92	4.299	144.1	162.3	4.639	10.52	12.24	21.37	0.0153
29	122	177	32	497	129	456	721	49	755	55979
	14.06	12.56	4.027	146.5	173.1	3.850	10.73	13.94	19.03	0.0140
30	463	803	211	986	973	34	129	558	061	60046
	13.11	11.44	3.156	133.8	161.7	3.714	10.28	11.56	11.17	0.0209
31	224	558	463	095	687	286	912	463	347	24381
	13.86	14.77	4.530	149.3	141.0	4.217	12.46	11.29	22.19	0.0173
32	054	891	612	197	884	687	599	252	388	6165
	11.75	10.28	4.911	141.7	154.6	3.387	13.45	6.666	19.94	0.0148
33	17	912	565	007	939	755	238	667	898	10327
	10.83	11.41	3.401	130.8	166.6	3.836	13.55	13.40	10.56	0.0197
34	333	156	361	163	667	735	442	136	122	12772
	14.20	10.39	4.040	129.1	142.1	4.693	10.42	6.734	13.11	0.0224
35	068	116	816	837	769	878	517	694	224	10209
	14.26	13.04	3.346	119.6	152.5	3.428	14.16	14.08	20.86	0.0170
36	871	422	939	599	17	571	667	163	735	16158
	14.67	11.24	3.795	146.3	100.2	4.176	13.31	8.095	16.07	0.0231
37	687	15	918	265	721	871	633	238	143	94053
	13.55	13.82	4.653	148.5	155.7	3.768	12.73	5.034	18.41	0.0173
38	442	653	061	034	823	707	81	014	837	64646
	11.64	14.57	3.292	120.4	119.8	3.687	11.92	13.06	11.37	0.0238
39	966	483	517	762	639	075	177	122	755	30327
	14.16	13.58	3.074	116.9	110.6	3.619	13.58	9.659	13.31	0.0271
40	667	844	83	388	122	048	844	864	633	96752
	10.66	11.68	3.687	125.6	108.9	4.408	10.79	13.12	12.29	0.0278
41	32/	36/	0/5	463	/96	163	932	925	592	9073
	13.21	12.36	4.666	132.9	111.7	4.108	13.99	14.42	24.33	0.0251
42	429	395	66/	932	007	844	66	1//	6/3	58694
	14.74	12.80	4.408	119.1	146.5	4.503	11.81	14.62	11.98	0.0220
43	49	612	163	156	306	401	9/3	585	98	67437

	13.14	12.70	4.585	140.6	125.3	3.877	10.69	6.462	24.84	0.0192
44	626	408	034	122	061	551	728	585	694	51908
	14.03	13.38	4.571	112.5	121.4	4.163	14.98	9.115	20.25	0.0250
45	061	435	429	85	966	265	299	646	51	04611
	10.32	13.86	3.183	133.5	138.3	3.551	10.32	11.36	20.15	0.0210
46	313	054	673	374	673	02	313	054	306	79392
	12.02	14.98	3.306	144.6	172.1	4.394	12.05	8.231	20.35	0.0160
47	381	299	122	939	088	558	782	293	714	09747
	13.41	10.86	3.578	124.0	122.0	4.870	13.38	14.89	17.90	0.0241
48	837	735	231	136	408	748	435	796	816	10576
	14.23	13.14	3.850	125.3	145.9	4.829	14.77	10.20	11.27	0.0239
49	469	626	34	741	864	932	891	408	551	91413
	12.60	12.12	4.095	118.2	116.5	3.564	14.64	14.14	11.78	0.0254
50	204	585	238	993	986	626	286	966	571	27082
	14.60	10.15	3.741	139.7	150.3	3.374	13.41	11.63		0.0159
51	884	306	497	959	401	15	837	265	22.5	98891
	11.10	11.51	3.551	124.8	118.7	4.136	14.84	11.90	24.64	0.0216
52	544	361	02	299	755	054	694	476	286	64059
	14.37	10.90	3.959	133.2	175.9	4.557	12.26	11.70	23.82	0.0187
53	075	136	184	653	184	823	19	068	653	51429
	13.31	10.49	3.564	132.4	129.6	4.802	14.88	8.843	20.56	0.0231
54	633	32	626	49	599	721	095	537	122	69691
	11.41	14.20	3.414	111.2	123.6	4.598	12.87	13.53	18.11	0.0285
55	156	068	966	245	/35	639	415	/41	224	79599
FC	13.79	14.26	3.374	130.5	169.3	3.156	11.88	10.27	23.01	0.0163
56	252	8/1	15	44Z	8/8	463	11 44	211	02	28349
67	13.38	10.35	4.054	149.5	107.3	3.414	11.44	10.68	20.76	0.0270
57	435	10 11	422	910	409	900	12 04	12 10	15 66	0.0146
50	612	005	4.205	755	286	4.01Z	13.04	13.19	227	17221
50	13/18	12.84	2 2 2 2 3 2	116.3	104.6	24J 1 530	11 6/	10/17	23.62	0.0203
59	639	014	3.333	946	259	612	966	619	23.02	30474
	12 22	11 75	3 1 4 2	142.2	177 5	3 931	12 94	5 986	21.07	0.0154
60	789	17	857	449	51	973	218	395	143	4223
	10.49	13.69	4.503	147.9	113.3	3.755	11.58	12.51	15.76	0.0197
61	32	048	401	592	333	102	163	701	531	15677
	11.81	11.54	4.993	128.6	165.0	4.312	14.60	12.78	20.66	0.0192
62	973	762	197	395	34	925	884	912	327	58354
	12.70	11.61	4.979	114.4	167.2	4.775	11.68	11.49	16.88	0.0156
63	408	565	592	898	109	51	367	66	776	22807
	11.88	11.00	3.170	128.9	116.0	3.863	10.62	5.578	15.56	0.0246
64	776	34	068	116	544	946	925	231	122	09003
	14.64	12.94	4.748	138.7	129.1	3.945	11.03	7.142	11.07	0.0188
65	286	218	299	075	156	578	741	857	143	80126
	13.24	14.16	3.523	135.7	147.0	3.129	14.57	6.326	16.17	0.0190
66	83	667	81	143	748	252	483	531	347	60004

	11.07	10.22	4.149	134.8	120.4	3.741	10.56	12.99	23.31	0.0222
67	143	109	66	98	082	497	122	32	633	23589
	12.87	14.09	3.319	140.8	110.0	3.727	14.20	6.938	22.39	0.0249
68	415	864	728	844	68	891	068	776	796	02644
	12.39	11.34	3.809	129.7	176.4	4.435	14.94	5.646	15.05	0.0164
69	796	354	524	279	626	374	898	259	102	48309
	10.39	12.29	4.231	137.8	127.4	3.115	10.86	8.163	11.88	0.0199
70	116	592	293	912	83	646	735	265	776	01648
	10.01	11.85	4.394	134.3		4.884	14.26	12.10	12.90	0.0202
71	701	374	558	537	140	354	871	884	816	19015
	11.24	10.59	3.972	142.7	113.8	3.455	12.53	14.69	14.64	0.0234
72	15	524	789	891	776	782	401	388	286	59539
	11.03	11.20	3.129	134.0	128.5	4.462	11.24	9.047	24.43	0.0239
73	741	748	252	816	714	585	15	619	878	38608
	11.61	12.46	4.163	118.8	112.7	4.204		5.170	10.15	0.0261
74	565	599	265	435	891	082	12.5	068	306	27897
	13.82	12.09	3.387	123.1	109.5	3.047	11.07	12.85	18.01	0.0253
75	653	184	755	973	238	619	143	714	02	30912
	14.40	14.30	3.238	129.4	143.8	4.013	10.11	9.591	12.60	0.0196
76	476	272	095	558	095	605	905	837	204	11211
	13.96	12.22	4.136	127.8	169.9	3.170	11.17	6.258	12.09	0.0153
77	259	789	054	231	32	068	347	503	184	66174
	12.90	13.24	3.605	144.9	103.5	3.482	10.08	8.367	18.31	0.0274
78	816	83	442	66	374	993	503	347	633	77153
	13.99	14.74	4.816	110.6	137.8	3.959	12.32	8.707	14.94	0.0244
79	66	49	327	803	231	184	993	483	898	47436
	10.86	13.92	4.544	113.9	160.1	4.707	13.75	12.17	14.54	0.0178
80	735	857	218	456	361	483	85	687	082	87727
	11.85	13.11	3.061	138.4	135.6	4.353	14.71	7.687	10.96	0.0211
81	374	224	224	354	463	741	088	075	939	35081
	10.25	13.21	4.380	149.8	149.7	3.346	13.79	9.183	16.58	0.0149
82	51	429	952	639	959	939	252	673	163	07504
	14.54	14.03	3.755	131.3	174.2	4.734	11.61	7.210	14.23	0.0179
83	082	061	102	605	857	694	565	884	469	80509
	12.15	14.71	4.122	125.9	102.9	3.523	12.36	10.81	24.74	0.0269
84	986	088	449	184	932	81	395	633	49	1661
	14.57	10.69	3.102	143.3	148.1	4.272	12.02	12.44	16.47	0.0200
85	483	728	041	333	633	109	381	898	959	02239
	14.30	13.65	3.047	117.4	159.0	4.625	13.18	11.02	21.68	0.0176
86	272	646	619	83	476	85	027	041	367	88423
	11.47	14.84	4.068	131.9	177.0	4.244	14.67	7.619	15.96	0.0157
87	959	694	027	048	068	898	687	048	939	33819
	12.97	10.08	3.428	115.5	128.0	3.401	11.47	11.42	12.70	0.0268
88	619	503	571	782	272	361	959	857	408	38425
	10.90	12.05	4.421	117.2	144.3	3.306	10.18	13.67	14.84	0.0212
89	136	782	769	109	537	122	707	347	694	06824

	13.28	14.47	4.734	119.9	154.1	4.380	10.76	9.727	24.23	0.0226
90	231	279	694	32	497	952	531	891	469	56139
		14.40	4.680	137.6	131.8	3.224	13.96	7.891	11.68	0.0219
91	12.5	476	272	19	367	49	259	156	367	10029
	12.67	12.67	4.952	147.1	135.1	4.190	10.39	11.76	12.19	0.0196
92	007	007	381	429	02	476	116	871	388	48714
	12.46	12.15	4.761	143.6	114.4	4.476	13.86	5.714	13.52	0.0251
93	599	986	905	054	218	19	054	286	041	38917
	14.09	10.56	3.278	111.7	126.9	3.918	12.29	6.598	17.60	0.0268
94	864	122	912	687	388	367	592	639	204	06751
	10.73	12.97	3.442	121.5	178.6	3.700	12.77	5.238	13.72	0.0178
95	129	619	177	646	395	68	211	095	449	66927
	13.07	11.17	4.789	119.3	111.1	4.517	11.00	11.83	23.41	0.0262
96	823	347	116	878	565	007	34	673	837	8188
	11.27	11.30	4.312	114.7	162.8	3.278	13.01	7.278	11.58	0.0173
97	551	952	925	619	571	912	02	912	163	17328
	10.11	11.71	3.469	138.1	142.7	4.367	11.75	6.122	10.76	0.0185
98	905	769	388	633	211	347	17	449	531	71103
	11.44	11.58	3.034	136.2	117.1	3.183	13.82	9.931		0.0232
99	558	163	014	585	429	673	653	973	12.5	73651
10	11.68	12.90	4.938	120.2	104.0	3.251	14.50	11.22	17.80	0.0270
0	367	816	776	041	816	701	68	449	612	76635
10	14.33	14.54	4.517	141.9	125.8	4.081	12.90	13.33	11.47	0.0211
1	673	082	007	728	503	633	816	333	959	45319
10	12.36	14.88	3.986	113.1	133.4	3.074	11.20	7.414	19.13	0.0242
2	395	095	395	293	694	83	748	966	265	27801
10	11.98	13.52	4.843	147.6	178.0	4.285	12.43	9.251	13.92	0.0138
3	98	041	537	871	952	714	197	701	857	83937
10	13.58	14.13	4.448	136.5	157.9	4.938	14.30	13.26	18.62	0.0150
4	844	265	98	306	592	776	272	531	245	61437
10	14.98	14.06	3.673	125.1	122.5	4.027	13.07	7.074	10.45	0.0208
5	299	463	469	02	85	211	823	83	918	9191
10	11.30	11.07	3.455	147.4	167.7	3.591	10.45	9.455	21.27	0.0138
6	952	143	782	15	551	837	918	782	551	39452
10	14.13	14.33	4.707	121.8	140.5	3.061	12.56	13.46	17.39	0.0202
7	265	673	483	367	442	224	803	939	796	26115
10	14.88	13.48	3.904	136.8	168.8	3.972	14.33	8.571	22.60	0.0134
8	095	639	762	027	435	789	673	429	204	78746
10	13.62	13.41	4.489	143.0	151.9	4.965	10.35	9.863	19.43	0.0162
9	245	837	796	612	728	986	714	946	878	19002
11	13.45	12.19	4.802	122.9	173.7	3.510	14.81	10.61	13.21	0.0138
0	238	388	721	252	415	204	293	224	429	27852
11	12.53	13.35	3.646	146.0	132.9	3.088	12.15	14.55	22.29	0.0201
1	401	034	259	544	252	435	986	782	592	18442
11	10.08	14.23	4.367	131.0	159.5	4.095	11.13	14.82	13.62	0.0206
2	503	469	347	884	918	238	946	993	245	51781

11	10.62	14.43	4.462	122.6	124.7	4.979	11.34	8.435	17.29	0.0258
3	925	878	585	531	619	592	354	374	592	61365
11	10.93	11.95	3.088	142.5	105.7	4.571	12.84	12.04	17.19	0.0238
4	537	578	435	17	143	429	014	082	388	21607
11	11.51	14.91	4.897	122.1	143.2	3.333	10.96	10.06	14.03	0.0183
5	361	497	959	088	653	333	939	803	061	80899
11	12.09	13.79	3.659	110.9	161.2	4.122	10.15	8.911	12.80	0.0183
6	184	252	864	524	245	449	306	565	612	86065
11	10.42	12.87	4.829	126.7	138.9	4.054	12.39	14.96	23.21	0.0237
7	517	415	932	347	116	422	796	599	429	83643
11	11.37	10.62	4.190	127.5	174.8	4.340	10.93	10.40	10.25	0.0170
8	755	925	476	51	299	136	537	816	51	53803
11	11.17	10.79	4.244	145.7	118.2	4.911	11.54	7.823	18.21	0.0181
9	347	932	898	823	313	565	762	129	429	39159
12	13.69	10.18	3.823	113.6	168.2	4.068	13.11	14.01	15.35	0.0156
0	048	707	129	735	993	027	224	361	714	20676
12	10.18	13.07	4.557	137.3	156.8	4.748	12.97	5.850	21.88	0.0176
1	707	823	823	469	707	299	619	34	776	76285
12	14.91	11.47	3.931	127.2	117.6	3.142	14.06	9.523	21.58	0.0219
2	497	959	973	789	871	857	463	81	163	80566
12	13.92	10.96	3.251	145.2	136.7	3.319	12.70	6.394	14.33	0.0186
3	857	939	701	381	347	728	408	558	673	87831
12	10.52	10.42	4.081	145.5	149.2	4.231	14.23	7.755	20.96	0.0167
4	/21	51/	633	102	51/	293	469	102	939	80294
12	11.00	12.43	3.632	146.8	158.5	4.421	13.89	12.31	23.92	0.0139
5	34	197	653	/0/	034	769	456	293	857	08584
12	13.89	11.13	3.782	112.8	130.7	4.993	10.90	11.15	16.68	0.0260
0	450	946	313	5/1	483	197	130	040	367	00726
12	10.28	14.94	3.360	134.0	126.3	4.680	12.22	7.482	16.98	0.0249
/	912	090	544	259	940	272	10.22	993	98	794
12	14.45	13.31	4.320	127.0	107.8	1	10.22	14.28	10.02	0.0249
0	070 12 77	10.45	1 775	112.2	912 112 2	4	11 51	971 9070	15 15	0.0252
12	211	10.45 010	4.775 51	112.5	112.2	200	261	502	206	10/27
13	12.63	12 18	3 7 7 7	129	115 5	1 721	10.25	9 3 1 9	10.66	0 0225
13	605	027	201	139.5	102	4.721 088	51	728	327	57611
13	12.84	10.76	1 176	128.0	102	1 1 1 8	12.63	12.65	10.86	0.0170
1	014	531	19	952	163	98	605	306	735	35068
13	11 3/	10.93	3 197	131.6	172.6	3 006	13 28	10.88	19.23	0.0158
2	354	537	279	327	531	803	231	435	469	71617
13	13 75	11 64	4.965	141 1	106.2	3,292	13 35	11 08	16 78	0.0148
3	85	966	986	565	585	517	034	844	571	3236
13	11.20	11.98	4.108		148.7	3.210	12.67	5.102	24.54	0.0157
4	748	98	844	130	075	884	007	041	082	68878
13	14.50	12.02	3.496	141.4	131.2	4.585	11.30	5.918	21.98	0.0140
5	68	381	599	286	925	034	952	367	98	05776

13	11.13	12.53	3.863	117.7	101.9	3.986	12.09	5.782	24.03	0.0190
6	946	401	946	551	048	395	184	313	061	03309
13	10.76	12.63	4.258	149.0	101.3	3.782	13.14	8.027	22.80	0.0149
7	531	605	503	476	605	313	626	211	612	33294
13	12.43	12.77	4.693	123.4	170.4	4.789	12.60	6.054	12.39	0.0139
8	197	211	878	694	762	116	204	422	796	03989
13	10.45	13.01	3.006	113.4	157.4	3.809	11.78	8.639	21.17	0.0196
9	918	02	803	014	15	524	571	456	347	08033
14	12.73	13.62	3.877	148.2	105.1	4.897	14.03	10.34	17.09	0.0135
0	81	245	551	313	701	959	061	014	184	503
14	12.94	13.75	3.210	126.4	136.1	4.925	14.09	5.510	19.54	0.0143
1	218	85	884	626	905	17	864	204	082	90179
14	12.26	13.89	4.625	135.4	175.3	3.197	13.69	10.54	23.72	0.0153
2	19	456	85	422	741	279	048	422	449	05212
14	14.77	14.37	3.265	143.8	123.1	3.904	12.19	13.74	16.27	0.0168
3	891	075	306	776	293	762	388	15	551	016
14	12.05	14.50	4.013	110.1	164.4	3.795	14.47	12.58	19.33	0.0152
4	782	68	605	361	898	918	279	503	673	45085
14	12.32	14.60	3.224	137.0	163.9	4.149	12.80	13.60	10.35	0.0158
5	993	884	49	748	456	66	612	544	714	94743
14	11.71	14.64	3.619	138.9	145.4	3.632	10.59	5.374	15.25	0.0149
6	769	286	048	796	422	653	524	15	51	34279
14	11.95	14.81	3.482	140.0	120.9	4.299	14.37	14.35	18.92	0.0137
7	578	293	993	68	524	32	075	374	857	24683